

Vant Spyker + Schulz Proposed Warehouse / Storage Stormwater Management Report

120 Pillsbury Drive Midland ON 22-6506

September 26, 2024

Submitted By:

Quantum Engineering Inc. 97 Copeland Creek Drive Tiny, ON L9M 0M2 T (705) 549-1791 F (866) 516-9827

Distribution List

Hard Copies	PDF	Email	Organization Name
0	1	Yes	Town of Midland
0	1	Yes	Eric Vant Spyker + Lindsay Schultz

Record of Revisions

Revision	Date	Description
1.0	December 2023	Initial Submission to Town
1.1	February 2024	Pre-Consultation Resubmission to Town
1.2	September 2024	Revised per Town Pre-Consultation Comments

Prepared By:

Katrina Lalonde, P.Eng.

Reviewed By:

David W. Lalonde, P. Eng.

Disclaimers

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of Quantum Engineering Inc. (Quantum).

In the preparation of the various instruments of service contained herein, Quantum was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than Quantum. For its part Quantum has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. Quantum, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents.

Quantum makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

Table of Contents

Table	of Contents	C
1.0	Introduction	d
2.0	Site Conditions	d
3.0	Hydrology	е
4.0	Stormwater Management Plan	h
4.0 .1	Stormwater Management Plan	h h
4.0 .1 .2	Stormwater Management Plan Quality Control Quantity Control	h h h
4.0 .1 .2 .3	Stormwater Management Plan Quality Control Quantity Control Operational Maintenance Plan.	h h h 7

Appendices

Appendix A -	Drawings	Α
SW1 -	Storm Water – Pre Dev	SW1
SW2 -	Storm Water – Post Dev	SW2

Appendix B – Design Calculations

Pre-Development – Catchment 101	В
Post-Development – Catchment 201	C
Post-Development – Catchment 202	D
Infiltration Trench – Catchment 202.	E
Post-Development – Catchment 203	F
Infiltration Trench – Catchment 203.	G
Post-Development – Catchment 204	Н
Infiltration Trench – Catchment 204.	I

1.0 Introduction

Quantum Engineering Inc. (Quantum) has been retained by Eric Vant Spyker and Lindsay Schultz (1793925 Ontario Inc.) to provide engineering services related to the site plan design; including but not limited to, site servicing; grading; and stormwater management design for the proposed Vant Spyker + Schultz warehouse and office development. The proposed development is to be located at 120 Pillsbury Drive in the Town of Midland and consists of a private business facility complete with a one-storey warehouse area and a two-storey professional office area within a single building.

This Stormwater Management (SWM) Report has been prepared in support of an application for Site Plan Approval from the Town of Midland for the proposed Vant Spyker + Schultz development at 120 Pillsbury Drive and is submitted for Town approval of the Stormwater Management Design for the subject property.

2.0 Site Conditions

A hydrogeological assessment has been completed by Ian D. Wilson Associates Ltd, dated November 23, 2023, and provided under separate cover.

As per the hydrogeological assessment, the subject lands occupy a 0.68 ha "L" shaped parcel located on the west side of Pillsbury Drive, approximately 280 m north of the intersection with William Street. The site is currently undeveloped and is mostly forested. The site exhibits a steep topography with a total site relief of approximately 15m to 18m. The proposed development is to be located within the lower, relatively moderate sloped, eastern half of the site. The site location can be seen below in Figure 1.

Figure 1: Site Location

The native soil profile consists of a lightly compact stony sand to stony sandy silt (estimated T-time of 15 to 25min/cm) overlying a sandy silt till (estimated T-time of 30min/cm).

Please refer to above-referenced hydrogeological assessment, provided under separate cover, for additional details.

3.0 Hydrology

Pre-development conditions for the purposes of this SWM Report are taken to be existing site conditions as of December 2023. No existing SWM facilities are currently on-site.

Soils on the subject site consist of a lightly compact stony sand to stony sandy silt overlying a sandy silt till, based on grain-size analyses completed by Ian D. Wilson and included in the hydrogeological assessment. The soil sample testing identified T-times between 15 to 30 min/cm. For the purposes of our calculations, the more conservative value of 30 min/cm was used, and is equal to a permeability 'k'-value of 5.56 x 10⁻⁶ m/s.

Peak flows and storage requirements were calculated using the Rational Method (Q = C x I x A). This method calculates peak flows based on drainage area, runoff coefficient, and rainfall intensity. The drainage areas for pre-development and post-development conditions can be found on Drawing SW1 and SW2 in Appendix A. Runoff coefficients are as noted in Table 1 below, and rainfall intensity data are determined based on intensity-duration frequency (IDF) curves provided in the Town of Midland Engineering Development Design Standards, Revised December 2012.

Land Use	Runoff Coefficient
Grass	0.20
Paved	0.90
Building	0.90
Trees	0.10

Table 1 : Land Use Categories and Runoff Coefficient Table

Tables 2 through 6 below summarize the results of the stormwater management analysis with more detailed calculations found in Appendix B.

Catchment	Total Area	Grass	Paved	Building	Trees	Gravel	Weighted C
Area	[m ²]	Weighted O					
101	6749	0	0	0	6749	0	0.10

Table 2: Pre-Development Weighted Runoff Coefficients

Table 3: Pre-Development Peak Flows

Catchment	2 Year	5 Year	25 Year	100 Year
Area	m³/s	m³/s	m³/s	m³/s
101	0.0084	0.0112	0.0178	0.0196

Table 4: Post-Development	Weighted F	Runoff Coeffici	ent
---------------------------	------------	-----------------	-----

Catchment	Total Area	Grass	Paved	Building	Trees	Gravel	Weighted C
Area	[m ²]	weighted C					
201	4258	477	246	0	3535	0	0.16
202	1067	241	0	417	409	0	0.44
203	507	0	507	0	0	0	0.90
204	907	388	519	0	0	0	0.61

Catchment	2 Year	5 Year	25 Year	100 Year
Area	m³/s	m³/s	m³/s	m³/s
201	0.0083	0.0112	0.0176	0.0195
202	0.0058	0.0077	0.0122	0.0135
203	0.0057	0.0076	0.0120	0.0133
204	0.0068	0.0091	0.0143	0.0158
Total	0.0266	0.0356	0.0561	0.0621

Table 5: Uncontrolled Post-Development Peak Flows

Table 6: Pre vs. Uncontrolled Post Development Peak Flow Comparison

Development Area	2 Year	5 Year	25 Year	100 Year
20101010111100	m³/s	m³/s	m³/s	m³/s
Pre	0.0084	0.0112	0.0178	0.0196
Post (Uncontrolled)	0.0266	0.0356	0.0561	0.0621
Difference	0.0182	0.0244	0.0383	0.0425

As can be seen above in Table 6, the uncontrolled post-development peak flows for all catchment areas (201 to 204) cumulatively are higher than the pre-development conditions (catchment area 101).

In general, the stormwater management approach utilized for this site is to design stormwater facilities through the implementation of LID (i.e. infiltration trenches/basins). For catchment areas 202, 203 and 204, the peak flow rates for up to the 100-year storm event will be contained and infiltrated through infiltration basins as detailed in Section 4.0 below. Catchment area 201, which is mainly forested area to remain in its existing condition, will remain uncontrolled and enter the Town's nearby ditch system. This approach is consistent with its existing condition. A summary of the controlled post-development peak flows, through the implementation of the above-noted proposed LID's, can be seen in Table 7 below. As can be seen below in Table 8, the total controlled post-development peak flow will be significantly lower than the pre-development condition.

Catchment	2 Year	5 Year	25 Year	100 Year
Area	m³/s	m³/s	m³/s	m³/s
201	0.0083	0.0112	0.0176	0.0195
202	0.0000	0.0000	0.0000	0.0000
203	0.0000	0.0000	0.0000	0.0000
204	0.0000	0.0000	0.0000	0.0000
Total	0.0083	0.0112	0.0176	0.0195

Table 7: Controlled Post-Development Peak Flows

Development Area	2 Year	5 Year	25 Year	100 Year	
20101010111100	m³/s	m³/s	m³/s	m³/s	
Pre	0.0084	0.0112	0.0178	0.0196	
Post (Uncontrolled)	0.0083	0.0112	0.0176	0.0195	
Difference	≤ 0.0	≤ 0.0	≤ 0.0	≤ 0.0	

Table 8: Pre vs. Controlled Post Development Peak Flow Comparison

Pre-development site conditions are shown on Drawing SW1 in Appendix A. The proposed infiltration trenches and post-development site conditions are shown schematically on Drawing SW2 in Appendix A. Construction details are included within the complete Site Plan Application – Issued for Approval Drawings (Project No. 22-6506, Drawings C1 to C5 by Quantum Engineering Inc., dated September 25, 2024).

4.0 Stormwater Management Plan

The following stormwater management plan has been prepared to address both stormwater quality control, and stormwater quantity control. The intent of this plan is to address stormwater in an environmentally friendly manner. The following sections will address how a combination of catch basins and infiltration trench are being utilized for stormwater management purposes.

.1 Quality Control

Quality control is being provided through the use of standard goss traps at the outlets of catch basins, allowing for the settlement of particles for removal. Catch basins should have a minimum 0.6m deep sump area. Additionally, the catch basins will discharge to the proposed infiltration trench, which will have a 150mm layer of filter sand along its bottom.

For the system to function as intended, it is critical that the system not be clogged with sediment and debris. Our office recommends that catch basins be cleaned-out once or twice per year to ensure the continued removal of silt and oil from the stormwater runoff.

.2 Quantity Control

Several below-grade infiltration trenches or basins are proposed to provide quantity control, to control the 100-year storm event at a minimum, for the subject site. See Table 9 below for details regarding the infiltration systems for each catchment area.

Catchment Area	Total Volume	Effective Storage	Footprint	Length	Width	Depth*
	m³	m³	m²	m	m	m
201	-	-	-	-	-	-
202	42.0	16.8	28.0	28.0	1.0	1.5
203	42.0	16.8	28.0	28.0	1.0	1.5
204	49.5	19.8	33.0	22.0	1.5	1.5
Total	133.5	53.4	89.0	-	-	-

Table 9: Infiltration System Summary

The infiltration trench/basins will cover a total footprint of 89.0m², a total storage volume of 133.5 m³, resulting in an effective storage volume of 53.4 m³ based on the assumption that it will be filled with 50mm diameter stone with an approximate void space of 40%.

As previously noted, the infiltration calculations are completed utilizing the values determined by Ian D. Wilson within the hydrogeological assessment. This report concluded that a conservative value for infiltration of 30 min/cm was to be carried for SWM design (equal to a permeability 'k'-value of 5.56 x 10⁻⁶ m/s). It should also be noted that the hydrogeological and water balance analysis report concluded that a total of at least 24.8 m² footprint should be allocated to LID measures for infiltration purposes. Our design has met and exceeded that requirement based on our site-specific analysis using the Rational Method.

.3 Operational Maintenance Plan

To reiterate from section 4.1 above, catch basin sumps are to be inspected and cleaned-out once or twice per year to ensure the continued removal of silt and oil from stormwater runoff.

In addition to these annual inspections, it is recommended that approximately every five years, the 200mm perforated pipe in the infiltration trench should receive a CCTV inspection and be cleaned-out if any build-up of sedimentation is found.

5.0 Conclusions

It is the recommendation of our office that the infiltration trenches be implemented as per Drawings SW1, SW2, and C1 to C5 to satisfy SWM quantity and quality control requirements, creating a net reduction in total surface stormwater runoff from pre to post-development.

We trust this SWM Report meets the requirements of the Town of Midland. Should you have any questions, feel free to contact our office.

Appendix A – Drawings

- SW1 Stormwater Pre Development
- SW2 Stormwater Post Development

No.	DESCRIPTION	Date
I	FIRST SUBMISSION	DEC 22, 2023
2	FOR PRE-CONSULT	FEB 14, 2024
3	SITE PLAN SUBMISSION	SEPT 25, 2024
4		
5		

OUANTUM NEERING

97 Copeland Creek Dr Tiny Ontario L9M 0M2 Phone: (705) 549-1791 Fax: (866) 516-9827 WWW.QENG.CA

PROJECT	NEW C FACILI	OMMERC TY	IAL
LOCATION	I20 PILLSBI MIDLAND, (URY DR. DNTARIO	
For	SCHULTZ -	VANT SPYKEF	2
Drawing	Storm W	ater - Pre	DEV
Date	DEC. 2023	Project No	Page ID
Drawn By	D.L.W.	6506	SW
Scale	See Plot		

No.	DESCRIPTION	Date
I	FIRST SUBMISSION	DEC 22, 2023
2	FOR PRE-CONSULT	FEB 14, 2024
3	SITE PLAN SUBMISSION	SEPT 25, 2024
4		
5		

OUANTUM

97 Copeland Creek Dr Tiny Ontario L9M 0M2 Phone: (705) 549-1791 Fax: (866) 516-9827 WWW.QENG.CA

PROJECT NEW COMMERCIAL FACILITY

LOCATION 120 PILLSBURY DR. MIDLAND, ONTARIO

SCHULTZ - VANT SPYKER

For

Drawing STORM WATER - POST DEV

Page ID Date PROJECT NO DEC. 2023 DRAWN BY D.L.W. SW2 5364 Scale See Plot

Appendix B – Design Calculations

Pre Development – Catchment 101

2 Year

Catchment Area - 6,739 m² Post-development Runoff Coefficient - 0.10 Required Storage – 0 m³ Provided Storage - 0 m³ A = 807.44 B = 6.75 C = 0.828

		Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m³]	[m ³]	[m ³]
15	44.84	0.0084			
30	26.54	0.0050			
60	14.61	0.0027			
120	7.69	0.0014			
130	7.13	0.0013			
140	6.65	0.0012			
150	6.22	0.0012			
160	5.85	0.0011			
170	5.52	0.0010			
180	5.22	0.0010			

5 Year

Catchment Area - 6,739 m² Post-development Runoff Coefficient - 0.10 Required Storage - 0 m³ Provided Storage – 0 m³ A = 1135.4 B = 7.5 C = 0.841 Post IDF Development Inflow Outflow Required Volume Storage Duration Intensity Peak Q Volume [min] [mm/hr] [m³/s] [m³] [m³] 15 60.00 0.0112 30 36.00 0.0067 60 20.00 0.0037

[m³]

120	10.59	0.0020	
130	9.82	0.0018	
140	9.15	0.0017	
150	8.57	0.0016	
160	8.06	0.0015	
170	7.61	0.0014	
180	7.20	0.0013	

25 Year

Catchment Area - 6.739 m² Post-development Runoff Coefficient - 0.10 Required Storage - 0 m³ Provided Storage – 0 m³ A = 1973.1 B = 9.0 C = 0.868

100 Year

Catchment Area - 6.739 m² Post-development Runoff Coefficient - 0.10 Required Storage - 0 m³ Provided Storage – 0 m³ A = 2193.1 B = 9.04 C = 0.871 _

Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage	Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
min]	[mm/hr]	[m ³ /s]	[m ³]	[m ³]	[m ³]	[min]	[mm/hr]	[m ³ /s]	[m ³]	[m ³]	[m ³]
15	94.71	0.0178				15	104.74	0.0196			
30	58.29	0.0109				30	64.50	0.0121			
60	32.94	0.0062				60	36.47	0.0068			
120	17.62	0.0033				120	19.51	0.0037			
130	16.35	0.0031				130	18.11	0.0034			
140	15.26	0.0029				140	16.89	0.0032			
150	14.30	0.0027				150	15.83	0.0030			
160	13.45	0.0025				160	14.90	0.0028			
170	12.70	0.0024				170	14.06	0.0026			
180	12.03	0.0023				180	13.32	0.0025			

2 Year

Catchment Area $-4,258 \text{ m}^2$ Post-development Runoff Coefficient -0.16Required Storage -0 m^3 Provided Storage -0 m^3 A = 807.44 B = 6.75 C = 0.828

5 Year

Catchment Area $-4,258 \text{ m}^2$ Post-development Runoff Coefficient -0.16Required Storage -0 m^3 Provided Storage -0 m^3 A = 1135.4 B = 7.5 C = 0.841

		Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]
15	44.84	0.0083	7.5133	0.2448	7.27
30	26.54	0.0049	8.8933	0.4896	8.40
60	14.61	0.0027	9.7926	0.9792	8.81
120	7.69	0.0014	10.3141	1.9584	8.36
130	7.13	0.0013	10.3565	2.1216	8.23
140	6.65	0.0012	10.3932	2.2848	8.11
150	6.22	0.0012	10.4251	2.448	7.98
160	5.85	0.0011	10.4533	2.6112	7.84
170	5.52	0.0010	10.4782	2.7744	7.70
180	5.22	0.0010	10.5005	2.9376	7.56

25 Year

Catchment Area $- 4,258 \text{ m}^2$ Post-development Runoff Coefficient - 0.16Required Storage $- 0 \text{ m}^3$ Provided Storage $- 0 \text{ m}^3$ A = 1973.1 B = 9.0 C = 0.868

		Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m³]
15	60.00	0.0112	10.0549	0.3366	9.72
30	36.00	0.0067	12.0659	0.6732	11.39
60	20.00	0.0037	13.4066	1.3464	12.06
120	10.59	0.0020	14.1952	2.6928	11.50
130	9.82	0.0018	14.2597	2.9172	11.34
140	9.15	0.0017	14.3155	3.1416	11.17
150	8.57	0.0016	14.3642	3.366	11.00
160	8.06	0.0015	14.4071	3.5904	10.82
170	7.61	0.0014	14.4451	3.8148	10.63
180	7.20	0.0013	14.4791	4.0392	10.44

100 Year

Catchment Area $-4,258 \text{ m}^2$ Post-development Runoff Coefficient -0.16Required Storage -0 m^3 Provided Storage -0 m^3 A = 2193.1 B = 9.04 C = 0.871 Post

		Post						POSL			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage	Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]	[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m³]
15	94.71	0.0176	15.8718	0.5202	15.35	15	104.74	0.0195	17.5515	0.5814	16.97
30	58.29	0.0109	19.5346	1.0404	18.49	30	64.50	0.0120	21.6157	1.1628	20.45
60	32.94	0.0061	22.0826	2.0808	20.00	60	36.47	0.0068	24.4461	2.3256	22.12
120	17.62	0.0033	23.6232	4.1616	19.46	120	19.51	0.0036	26.1586	4.6512	21.51
130	16.35	0.0030	23.7507	4.5084	19.24	130	18.11	0.0034	26.3004	5.0388	21.26
140	15.26	0.0028	23.8610	4.8552	19.01	140	16.89	0.0031	26.4231	5.4264	21.00
150	14.30	0.0027	23.9575	5.202	18.76	150	15.83	0.0029	26.5304	5.8140	20.72
160	13.45	0.0025	24.0426	5.5488	18.49	160	14.90	0.0028	26.6249	6.2016	20.42
170	12.70	0.0024	24.1181	5.8956	18.22	170	14.06	0.0026	26.7090	6.5892	20.12
180	12.03	0.0022	24.1857	6.2424	17.94	180	13.32	0.0025	26.7841	6.9768	19.81

2 Year

Catchment Area - 1,067 m² Post-development Runoff Coefficient - 0.44 Required Storage - 6.5 m³ Provided Storage - 16.8 m³ A = 807.44 B = 6.75 C = 0.828

5 Year

Catchment Area $- 1,067 \text{ m}^2$ Post-development Runoff Coefficient - 0.44Required Storage $- 9.0 \text{ m}^3$ Provided Storage $- 16.8 \text{ m}^3$ A = 1135.4 B = 7.5 C = 0.841

Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]
15	44.84	0.0058	5.2054	0.0828	5.12
30	26.54	0.0034	6.1615	0.1656	6.00
60	14.61	0.0019	6.7845	0.3312	6.45
120	7.69	0.0010	7.1459	0.6624	6.48
130	7.13	0.0009	7.1752	0.7176	6.46
140	6.65	0.0009	7.2006	0.7728	6.43
150	6.22	0.0008	7.2228	0.828	6.39
160	5.85	0.0008	7.2423	0.8832	6.36
170	5.52	0.0007	7.2596	0.9384	6.32
180	5.22	0.0007	7.2750	0.9936	6.28

Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m³]
15	60.00	0.0077	6.9663	0.1098	6.86
30	36.00	0.0046	8.3596	0.2196	8.14
60	20.00	0.0026	9.2884	0.4392	8.85
120	10.59	0.0014	9.8348	0.8784	8.96
130	9.82	0.0013	9.8795	0.9516	8.93
140	9.15	0.0012	9.9181	1.0248	8.89
150	8.57	0.0011	9.9519	1.098	8.85
160	8.06	0.0010	9.9816	1.1712	8.81
170	7.61	0.0010	10.0079	1.2444	8.76
180	7.20	0.0009	10.0315	1.3176	8.71

25 Year

Catchment Area $- 1,067 \text{ m}^2$ Post-development Runoff Coefficient - 0.44Required Storage $- 14.9 \text{ m}^3$ Provided Storage $- 16.8 \text{ m}^3$ A = 1973.1 B = 9.0 C = 0.868 100 Year Catchment Area $- 1,067 \text{ m}^2$ Post-development Runoff Coefficient - 0.44Required Storage $- 16.7 \text{ m}^3$ Provided Storage $- 16.8 \text{ m}^3$ A = 2193.1 B = 9.04 C = 0.871

		Post						Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage	Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
min]	[mm/hr]	[m³/s]	[m³]	[m ³]	[m ³]	[min]	[mm/hr]	[m ³ /s]	[m ³]	[m ³]	[m³]
15	94.71	0.0122	10.9964	0.1854	10.81	15	104.74	0.0135	12.1601	0.18	11.98
30	58.29	0.0075	13.5340	0.3708	13.16	30	64.50	0.0083	14.9759	0.3600	14.62
60	32.94	0.0042	15.2993	0.7416	14.56	60	36.47	0.0047	16.9368	0.7200	16.22
120	17.62	0.0023	16.3667	1.4832	14.88	120	19.51	0.0025	18.1233	1.4400	16.68
130	16.35	0.0021	16.4550	1.6068	14.85	130	18.11	0.0023	18.2215	1.5600	16.66
140	15.26	0.0020	16.5315	1.7304	14.80	140	16.89	0.0022	18.3065	1.6800	16.63
150	14.30	0.0018	16.5983	1.854	14.74	150	15.83	0.0020	18.3809	1.8000	16.58
160	13.45	0.0017	16.6573	1.9776	14.68	160	14.90	0.0019	18.4464	1.9200	16.53
170	12.70	0.0016	16.7096	2.1012	14.61	170	14.06	0.0018	18.5046	2.0400	16.46
180	12.03	0.0016	16.7564	2.2248	14.53	180	13.32	0.0017	18.5567	2.1600	16.40

Infiltration Trench – Catchment 202

T-time = 30 min/cm (k = $5.56 \times 10^{-6} \text{ m/s}$)* <u>Trench Dimensions</u> Length = 28.0 m Width = 1.0 m Depth = 1.5 m Void Ratio = 40%

Infiltration equation is given by $Q = k \times I \times A$ where k = permeability (m/s) I = water depth (m) A = trench bottom area (m^2)

Depth	Total Volume	Storage Volume	Infiltration Discharge	Notes
0.00	0.00	0.00	0.000000	Bottom of Trench
0.05	1.40	0.56	0.00008	
0.10	2.80	1.12	0.000016	
0.15	4.20	1.68	0.000023	
0.20	5.60	2.24	0.000031	
0.25	7.00	2.80	0.000039	
0.30	8.40	3.36	0.000047	
0.35	9.80	3.92	0.000054	
0.40	11.20	4.48	0.000062	
0.45	12.60	5.04	0.000070	
0.50	14.00	5.60	0.000078	
0.55	15.40	6.16	0.000086	
0.58	16.24	6.50	0.000090	2 Year
0.60	16.80	6.72	0.000093	
0.65	18.20	7.28	0.000101	
0.70	19.60	7.84	0.000109	
0.75	21.00	8.40	0.000117	
0.79	22.12	8.85	0.000123	
0.80	22.40	8.96	0.000124	5 Year
0.85	23.80	9.52	0.000132	
0.90	25.20	10.08	0.000140	
0.95	26.60	10.64	0.000148	
1.00	28.00	11.20	0.000156	
1.05	29.40	11.76	0.000163	
1.10	30.80	12.32	0.000171	
1.15	32.20	12.88	0.000179	
1.20	33.60	13.44	0.000187	
1.25	35.00	14.00	0.000194	
1.30	36.40	14.56	0.000202	
1.35	37.80	15.12	0.000210	25 Year
1.40	39.20	15.68	0.000218	
1.45	40.60	16.24	0.000226	
1.50	42.00	16.80	0.000233	100 Year, Top of Trench

2 Year

Catchment Area -507 m^2 Post-development Runoff Coefficient -0.90Required Storage -6.5 m^3 Provided Storage -16.8 m^3 A = 807.44 B = 6.75 C = 0.828

5 Year

Catchment Area -507 m^2 Post-development Runoff Coefficient -0.90Required Storage -8.9 m^3 Provided Storage -16.8 m^3 A = 1135.4 B = 7.5 C = 0.841

		Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]
15	44.84	0.0057	5.1146	0.0693	5.05
30	26.54	0.0034	6.0540	0.1386	5.92
60	14.61	0.0019	6.6662	0.2772	6.39
120	7.69	0.0010	7.0212	0.5544	6.47
130	7.13	0.0009	7.0501	0.6006	6.45
140	6.65	0.0008	7.0750	0.6468	6.43
150	6.22	0.0008	7.0968	0.693	6.40
160	5.85	0.0007	7.1160	0.7392	6.38
170	5.52	0.0007	7.1329	0.7854	6.35
180	5.22	0.0007	7.1481	0.8316	6.32

		Post			
Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m³]
15	60.00	0.0076	6.8448	0.0945	6.75
30	36.00	0.0046	8.2138	0.189	8.02
60	20.00	0.0025	9.1264	0.378	8.75
120	10.59	0.0013	9.6632	0.756	8.91
130	9.82	0.0012	9.7072	0.819	8.89
140	9.15	0.0012	9.7451	0.882	8.86
150	8.57	0.0011	9.7783	0.945	8.83
160	8.06	0.0010	9.8075	1.008	8.80
170	7.61	0.0010	9.8334	1.071	8.76
180	7.20	0.0009	9.8565	1.134	8.72

25 Year

Catchment Area -507 m^2 Post-development Runoff Coefficient -0.90Required Storage -14.8 m^3 Provided Storage -16.8 m^3 A = 1973.1 B = 9.0 C = 0.868

100 Year Catchment Area -507 m^2 Post-development Runoff Coefficient -0.90Required Storage -16.37 m^3 Provided Storage -16.8 m^3 A = 2193.1 B = 9.04

					C = 0.871					
IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage	Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[mm/hr]	[m³/s]	[m ³]	[m ³]	[m ³]	[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m ³]
94.71	0.0120	10.8046	0.1557	10.65	15	104.74	0.0133	11.9480	0.18	11.77
58.29	0.0074	13.2980	0.3114	12.99	30	64.50	0.0082	14.7147	0.3600	14.35
32.94	0.0042	15.0325	0.6228	14.41	60	36.47	0.0046	16.6414	0.7200	15.92
17.62	0.0022	16.0813	1.2456	14.84	120	19.51	0.0025	17.8072	1.4400	16.37
16.35	0.0021	16.1680	1.3494	14.82	130	18.11	0.0023	17.9037	1.5600	16.34
15.26	0.0019	16.2432	1.4532	14.79	140	16.89	0.0021	17.9872	1.6800	16.31
14.30	0.0018	16.3088	1.557	14.75	150	15.83	0.0020	18.0603	1.8000	16.26
13.45	0.0017	16.3667	1.6608	14.71	160	14.90	0.0019	18.1247	1.9200	16.20
12.70	0.0016	16.4182	1.7646	14.65	170	14.06	0.0018	18.1819	2.0400	16.14
12.03	0.0015	16.4641	1.8684	14.60	180	13.32	0.0017	18.2330	2.1600	16.07
	IDF Intensity [mm/hr] 94.71 58.29 32.94 17.62 16.35 15.26 14.30 13.45 12.70 12.03	IDF IntensityPost Development Peak Q[mm/hr][m³/s]94.710.012058.290.007432.940.004217.620.002216.350.002115.260.001914.300.001813.450.001712.700.001612.030.0015	IDF IntensityPost Development Peak QInflow Volume[mm/hr][m³/s][m³]94.710.012010.804658.290.007413.298032.940.004215.032517.620.002216.081316.350.002116.168015.260.001916.243214.300.001816.308813.450.001716.366712.700.001616.418212.030.001516.4641	IDF IntensityPost Development Peak QInflow VolumeOutflow Volume[mm/hr][m³/s][m³][m³]94.710.012010.80460.155758.290.007413.29800.311432.940.004215.03250.622817.620.002216.08131.245616.350.002116.16801.349415.260.001916.24321.453214.300.001816.30881.55713.450.001716.36671.660812.700.001616.41821.7646	IDF IntensityPost Peak QInflow VolumeOutflow VolumeRequired Storage[mm/hr][m³/s][m³][m³][m³]94.710.012010.80460.155710.6558.290.007413.29800.311412.9932.940.004215.03250.622814.4117.620.002216.08131.245614.8416.350.002116.16801.349414.8215.260.001816.24321.453214.7914.300.001816.30881.55714.7513.450.001716.36671.660814.7112.700.001616.41821.764614.6512.030.001516.46411.868414.60	Post Intensity Post Peak Q Inflow Volume Outflow Volume Required Storage Duration [mm/hr] [m³/s] [m³] [m³] [m³] [mi] 94.71 0.0120 10.8046 0.1557 10.65 15 58.29 0.0074 13.2980 0.3114 12.99 30 32.94 0.0042 15.0325 0.6228 14.41 60 17.62 0.0022 16.0813 1.2456 14.84 120 16.35 0.0021 16.1680 1.3494 14.82 130 15.26 0.0019 16.2432 1.4532 14.79 140 14.30 0.0018 16.3088 1.557 14.75 150 13.45 0.0017 16.3667 1.6608 14.71 160 12.70 0.0016 16.4182 1.7646 14.65 170 12.03 0.0015 16.4641 1.8684 14.60 180	Post Inferensity Post Peak Q Inflow Volume Outflow Volume Required Storage IDF Duration IDF Intensity [mm/hr] [m³/s] [m³] [m³] [m³] [mi] [min] [mm/hr] 94.71 0.0120 10.8046 0.1557 10.65 15 104.74 58.29 0.0074 13.2980 0.3114 12.99 30 64.50 32.94 0.0042 15.0325 0.6228 14.41 60 36.47 17.62 0.0022 16.0813 1.2456 14.84 120 19.51 16.35 0.0021 16.1680 1.3494 14.82 130 18.11 15.26 0.0019 16.2432 1.4532 14.79 140 16.89 14.30 0.0018 16.3088 1.557 14.75 150 15.83 13.45 0.0017 16.3667 1.6608 14.71 160 14.90 12.70 0.0016 16.4182 1.7646 14.65 170 <td>IDF Intensity Post Peak Q Inflow Volume Outflow Volume Required Storage IDF Duration IDF Intensity Post Peak Q [mm/hr] [m³/s] [m³] [m³] [m³] [min] [mm/hr] [m³/s] 94.71 0.0120 10.8046 0.1557 10.65 15 104.74 0.0133 58.29 0.0074 13.2980 0.3114 12.99 30 64.50 0.0082 32.94 0.0042 15.0325 0.6228 14.41 60 36.47 0.0046 17.62 0.0021 16.1680 1.2456 14.84 120 19.51 0.0023 16.35 0.0021 16.1680 1.3494 14.82 130 18.11 0.0023 15.26 0.0019 16.2432 1.4532 14.79 140 16.89 0.0021 14.30 0.0018 16.3088 1.557 14.75 150 15.83 0.0020 13.45 0.0017 16.3667 1.6608 14.71</td> <td>Post InfersityPost Peak QInflow VolumeOutflow VolumeRequired StorageIDF DurationPost IDF Inflow DurationPost IDF Peak QPost VolumeInflow Volume[mm/hr][m³/s][m³][m³][min][min]IDF DurationPost Peak QInflow Volume[mm/hr][m³/s][m³][min][min][mm/hr][m³/s][m³]94.710.012010.80460.155710.6515104.740.013311.948058.290.007413.29800.311412.993064.500.008214.714732.940.004215.03250.622814.416036.470.004616.641417.620.002116.08131.245614.8412019.510.002517.807216.350.002116.16801.349414.8213018.110.002317.903715.260.001916.24321.453214.7914016.890.002117.987214.300.001816.3081.55714.7515015.830.002018.060313.450.001716.36671.660814.7116014.900.001918.124712.700.001616.41821.764614.6517014.060.001818.181912.030.001516.46411.868414.6018013.320.001718.2330</td> <td>Post Inflow Peak QInflow VolumeOutflow VolumeRequired StorageIDF DurationPost IDF IntensityPost Development Peak QInflow VolumeOutflow Volume[mm/hr][m³/s][m³][m³][min][min]IDF DurationPost Development Peak QInflow VolumeOutflow Volume[mm/hr][m³/s][m³][min][min][mm/hr][m³/s][m³][m³]94.710.012010.80460.155710.6515104.740.013311.94800.1858.290.007413.29800.311412.993064.500.008214.71470.360032.940.004215.03250.622814.416036.470.004616.64140.720017.620.002116.08131.245614.8412019.510.002517.80721.440016.350.002116.16801.349414.8213018.110.002317.90371.560015.260.001916.24321.453214.7914016.890.002117.98721.680014.300.001816.3081.55714.7515015.830.002018.10431.920013.450.001716.36671.660814.7116014.900.001918.12471.920012.700.001616.41821.764614.6517014.060.001818.18192.040012.03<t< td=""></t<></td>	IDF Intensity Post Peak Q Inflow Volume Outflow Volume Required Storage IDF Duration IDF Intensity Post Peak Q [mm/hr] [m³/s] [m³] [m³] [m³] [min] [mm/hr] [m³/s] 94.71 0.0120 10.8046 0.1557 10.65 15 104.74 0.0133 58.29 0.0074 13.2980 0.3114 12.99 30 64.50 0.0082 32.94 0.0042 15.0325 0.6228 14.41 60 36.47 0.0046 17.62 0.0021 16.1680 1.2456 14.84 120 19.51 0.0023 16.35 0.0021 16.1680 1.3494 14.82 130 18.11 0.0023 15.26 0.0019 16.2432 1.4532 14.79 140 16.89 0.0021 14.30 0.0018 16.3088 1.557 14.75 150 15.83 0.0020 13.45 0.0017 16.3667 1.6608 14.71	Post InfersityPost Peak QInflow VolumeOutflow VolumeRequired StorageIDF DurationPost IDF Inflow DurationPost IDF Peak QPost VolumeInflow Volume[mm/hr][m³/s][m³][m³][min][min]IDF DurationPost Peak QInflow Volume[mm/hr][m³/s][m³][min][min][mm/hr][m³/s][m³]94.710.012010.80460.155710.6515104.740.013311.948058.290.007413.29800.311412.993064.500.008214.714732.940.004215.03250.622814.416036.470.004616.641417.620.002116.08131.245614.8412019.510.002517.807216.350.002116.16801.349414.8213018.110.002317.903715.260.001916.24321.453214.7914016.890.002117.987214.300.001816.3081.55714.7515015.830.002018.060313.450.001716.36671.660814.7116014.900.001918.124712.700.001616.41821.764614.6517014.060.001818.181912.030.001516.46411.868414.6018013.320.001718.2330	Post Inflow Peak QInflow VolumeOutflow VolumeRequired StorageIDF DurationPost IDF IntensityPost Development Peak QInflow VolumeOutflow Volume[mm/hr][m³/s][m³][m³][min][min]IDF DurationPost Development Peak QInflow VolumeOutflow Volume[mm/hr][m³/s][m³][min][min][mm/hr][m³/s][m³][m³]94.710.012010.80460.155710.6515104.740.013311.94800.1858.290.007413.29800.311412.993064.500.008214.71470.360032.940.004215.03250.622814.416036.470.004616.64140.720017.620.002116.08131.245614.8412019.510.002517.80721.440016.350.002116.16801.349414.8213018.110.002317.90371.560015.260.001916.24321.453214.7914016.890.002117.98721.680014.300.001816.3081.55714.7515015.830.002018.10431.920013.450.001716.36671.660814.7116014.900.001918.12471.920012.700.001616.41821.764614.6517014.060.001818.18192.040012.03 <t< td=""></t<>

Infiltration Trench – Catchment 203

T-time = 30 min/cm (k = $5.56 \times 10^{-6} \text{ m/s}$)* <u>Trench Dimensions</u> Length = 24.0 m Width = 1.0 m Depth = 1.5 m Void Ratio = 40%

Infiltration equation is given by $Q = k \times I \times A$ where k = permeability (m/s) I = water depth (m) A = trench bottom area (m^2)

Depth	Total Volume	Storage Volume	Infiltration Discharge	Notes
0.00	0.00	0.00	0.000000	Bottom of Trench
0.05	1.40	0.56	0.00008	
0.10	2.80	1.12	0.000016	
0.15	4.20	1.68	0.000023	
0.20	5.60	2.24	0.000031	
0.25	7.00	2.80	0.000039	
0.30	8.40	3.36	0.000047	
0.35	9.80	3.92	0.000054	
0.40	11.20	4.48	0.000062	
0.45	12.60	5.04	0.000070	
0.50	14.00	5.60	0.000078	
0.55	15.40	6.16	0.000086	
0.58	16.24	6.50	0.000090	2 Year
0.60	16.80	6.72	0.000093	
0.65	18.20	7.28	0.000101	
0.70	19.60	7.84	0.000109	
0.75	21.00	8.40	0.000117	
0.79	22.12	8.85	0.000123	5 Year
0.80	22.40	8.96	0.000124	
0.85	23.80	9.52	0.000132	
0.90	25.20	10.08	0.000140	
0.95	26.60	10.64	0.000148	
1.00	28.00	11.20	0.000156	
1.05	29.40	11.76	0.000163	
1.10	30.80	12.32	0.000171	
1.15	32.20	12.88	0.000179	
1.20	33.60	13.44	0.000187	
1.25	35.00	14.00	0.000194	
1.30	36.40	14.56	0.000202	25 Year
1.35	37.80	15.12	0.000210	
1.40	39.20	15.68	0.000218	
1.45	40.60	16.24	0.000226	
1.50	42.00	16.80	0.000233	100 Year, Top of Trench

2 Year

Catchment Area – 907 m^2 Post-development Runoff Coefficient – 0.60 Required Storage – 7.7 m^3 Provided Storage – 19.8 m^3 A = 807.44 B = 6.75 C = 0.828

5 Year

Catchment Area -907 m^2 Post-development Runoff Coefficient -0.60Required Storage -10.5 m^3 Provided Storage -19.8 m^3 A = 1135.4 B = 7.5 C = 0.841

Post

Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]
15	44.84	0.0068	6.1055	0.0909	6.01
30	26.54	0.0040	7.2269	0.1818	7.05
60	14.61	0.0022	7.9577	0.3636	7.59
120	7.69	0.0012	8.3815	0.7272	7.65
130	7.13	0.0011	8.4159	0.7878	7.63
140	6.65	0.0010	8.4457	0.8484	7.60
150	6.22	0.0009	8.4717	0.909	7.56
160	5.85	0.0009	8.4945	0.9696	7.52
170	5.52	0.0008	8.5148	1.0302	7.48
180	5.22	0.0008	8.5329	1.0908	7.44

25 Year

Catchment Area -907 m^2 Post-development Runoff Coefficient -0.60Required Storage -17.6 m^3 Provided Storage -19.8 m^3 A = 1973.1 B = 9.0 C = 0.868

Duration	IDF Intensity	Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
[min]	[mm/hr]	[m³/s]	[m ³]	[m³]	[m ³]
15	60.00	0.0091	8.1709	0.1323	8.04
30	36.00	0.0054	9.8050	0.2646	9.54
60	20.00	0.0030	10.8945	0.5292	10.37
120	10.59	0.0016	11.5353	1.0584	10.48
130	9.82	0.0015	11.5878	1.1466	10.44
140	9.15	0.0014	11.6331	1.2348	10.40
150	8.57	0.0013	11.6727	1.323	10.35
160	8.06	0.0012	11.7075	1.4112	10.30
170	7.61	0.0012	11.7384	1.4994	10.24
180	7.20	0.0011	11.7660	1.5876	10.18

100 Year Catchment Area -907 m^2 Post-development Runoff Coefficient -0.60Required Storage -19.4 m^3 Provided Storage -19.8 m^3 A = 2193.1 B = 9.04 C = 0.871

Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage	Duration	IDF Intensity	Post Development Peak Q	Inflow Volume	Outflow Volume	Required Storage
min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]	[min]	[mm/hr]	[m³/s]	[m ³]	[m ³]	[m³]
15	94.71	0.0143	12.8978	0.2061	12.69	15	104.74	0.0158	14.2627	0.2313	14.03
30	58.29	0.0088	15.8742	0.4122	15.46	30	64.50	0.0098	17.5654	0.4626	17.10
60	32.94	0.0050	17.9448	0.8244	17.12	60	36.47	0.0055	19.8654	0.9252	18.94
120	17.62	0.0027	19.1967	1.6488	17.55	120	19.51	0.0030	21.2571	1.8504	19.41
130	16.35	0.0025	19.3003	1.7862	17.51	130	18.11	0.0027	21.3722	2.0046	19.37
140	15.26	0.0023	19.3900	1.9236	17.47	140	16.89	0.0026	21.4720	2.1588	19.31
150	14.30	0.0022	19.4684	2.061	17.41	150	15.83	0.0024	21.5591	2.3130	19.25
160	13.45	0.0020	19.5375	2.1984	17.34	160	14.90	0.0023	21.6360	2.4672	19.17
170	12.70	0.0019	19.5989	2.3358	17.26	170	14.06	0.0021	21.7043	2.6214	19.08
180	12.03	0.0018	19.6538	2.4732	17.18	180	13.32	0.0020	21.7653	2.7756	18.99

Infiltration Trench – Catchment 204 T-time = 30 min/cm (k = 5.56 x 10⁻⁶ m/s)* <u>Trench Dimensions</u> Length = 22.0 m Width = 1.5 m Depth = 1.5 m

Void Ratio = 40%

 $\begin{array}{ll} \mbox{Infiltration equation is given by } Q = k \ x \ I \ x \ A \\ \mbox{where} & k = \mbox{permeability (m/s)} \\ I = \mbox{water depth (m)} \\ A = \mbox{trench bottom area (m^2)} \end{array}$

Depth	Total Volume	Storage Volume	Infiltration Discharge	Notes
0.00	0.00	0.00	0.000000	Bottom of Trench
0.05	1.65	0.66	0.00009	
0.10	3.30	1.32	0.000018	
0.15	4.95	1.98	0.000028	
0.20	6.60	2.64	0.000037	
0.25	8.25	3.30	0.000046	
0.30	9.90	3.96	0.000055	
0.35	11.55	4.62	0.000064	
0.40	13.20	5.28	0.000073	
0.45	14.85	5.94	0.000083	
0.50	16.50	6.60	0.000092	
0.55	18.15	7.26	0.000101	2 Year
0.58	19.14	7.66	0.000106	
0.60	19.80	7.92	0.000110	
0.65	21.45	8.58	0.000119	
0.70	23.10	9.24	0.000128	
0.75	24.75	9.90	0.000138	
0.79	26.07	10.43	0.000145	5 Year
0.80	26.40	10.56	0.000147	
0.85	28.05	11.22	0.000156	
0.90	29.70	11.88	0.000165	
0.95	31.35	12.54	0.000174	
1.00	33.00	13.20	0.000183	
1.05	34.65	13.86	0.000193	
1.10	36.30	14.52	0.000202	
1.15	37.95	15.18	0.000211	
1.20	39.60	15.84	0.000220	
1.25	41.25	16.50	0.000229	25 Year
1.30	42.90	17.16	0.000238	
1.35	44.55	17.82	0.000248	
1.40	46.20	18.48	0.000257	100 Year
1.45	47.85	19.14	0.000266	
1.50	49.50	19.80	0.000275	Top of Trench