

Enhancing our communities

16728 Highway 12, Midland

PRELIMINARY STORMWATER MANAGEMENT REPORT

U-Haul Co. Canada Ltd.

File 324816 | September 25, 2024

Document Control

File:	Prepared by:	Prepared for:
324816	Tatham Engineering Limited	U-Haul Co. Canada Ltd.
	10 Diana Drive, Unit 7	152 East Drive
Date:	Orillia, Ontario L3V 8K8	Brampton, Ontario L6T 1C1
September	T 705-444-2565	
25, 2024	tathameng.com	

Authored by:	Reviewed by:	
	J. A. NEMISZ 100181826 PROFESSIONAL ING J. A. NEMISZ 100181826 PROFI. 25, 2024 324816 PROFESSIONAL ING J. A. NEMISZ 100181826	
Jacob Hofstetter, B.Eng., Engineering Candidate	Joshua Nemisz, B.A.Sc., P.Eng. Senior Engineer, Project Manager	

Disclaimer	Copyright
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and Tatham Engineering Limited undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.	This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tatham Engineering Limited.

Issue	Date	Description
1	September 25, 2024	First Submission

i

Document Contents

1	Introduction	1
1.1	Site Description	1
1.2	Objectives	1
1.3	Guidelines and Background Reports	1
1.4	Proposed Development	2
2	Existing Drainage Conditions	3
2.1	Existing Hydrology	3
3	Stormwater Management Plan	5
3 3.1	Stormwater Management Plan	5
3 3.1 3.2	Stormwater Management Plan Design Criteria Proposed Stormwater Management Plan	5 5
3 3.1 3.2 3.3	Stormwater Management Plan Design Criteria Proposed Stormwater Management Plan Water Quality Control	5 5 5
3 3.1 3.2 3.3 3.4	Stormwater Management Plan Design Criteria Proposed Stormwater Management Plan Water Quality Control Water Budget	5 5 10 11
3 3.1 3.2 3.3 3.4 4	Stormwater Management Plan Design Criteria Proposed Stormwater Management Plan Water Quality Control Water Budget	

Tables

Table 1: Pre-Development -Peak Flow Summary	. 4
Table 2: Highway 12 - Post to Pre-Development -Peak Flow Summary	. 6
Table 3: Post-Development - Uncontrolled Peak Flow Summary	. 8
Table 4: Quantity Control - Operating Characteristics Summary	. 9

Figures

Figure 1: Site Location Plan	. 14
Figure 2: Pre-Development Drainage Area Plan	. 15
Figure 3: Post-Development Drainage Area Plan	. 16

Appendices

Appendix A: Composite Runoff Coefficients

Appendix B: Modified Rational Method Calculations

Appendix C: Weir and Channel Flow Calculations

Appendix D: Stage Storage Discharge Calculations

Appendix E: Water Quality Controls

Appendix F: Water Budget Calculations

Appendix G: Design Drawings

1 Introduction

Tatham Engineering Limited (Tatham) has been retained by U-Haul Co. Canada Ltd. to prepare a Preliminary Stormwater Management (SWM) Report in support of a proposed development located at 16728 Highway 12 in the Town of Midland (Town). A Functional Servicing Report (FSR), Traffic Impact Brief (TIB) and Hydrogeological Assessment (Hydro-G) Report have been prepared by Tatham and are submitted under separate cover.

1.1 SITE DESCRIPTION

The overall development site is approximately 2.35 hectares in size and is located at 16728 Highway 12 within the Town of Midland. The property is bound by Prospect Boulevard to the south, an existing commercial hotel to the east, Highway 12 to the north, and an existing commercial automotive dealership to the west.

The property is located in the Wye River watershed which is within the jurisdiction of the Severn Sound Environmental Association (SSEA). The site location is illustrated on Figure 1 enclosed at the rear of this report for reference.

1.2 OBJECTIVES

The primary objective of this report is to demonstrate the proposed preliminary SWM plan will address potential adverse impacts the development may have on the local surface water features and water quality. This will be accomplished by evaluating the impacts of the development on the local drainage conditions and, where necessary, provide solutions to mitigate potential adverse impacts.

1.3 GUIDELINES AND BACKGROUND REPORTS

The proposed SWM Plan was developed recognizing the pertinent Municipal and Provincial guidelines on municipal design, water resources, and the environment, as well as the following publications:

- Town of Midland Engineering Development Design Standards, (2024);
- Design Criteria for Sewage Works, Storm Sewers and Forcemains for Alterations Authorized under Environmental Compliance Approvals (MECP, 2022);
- Stormwater Management Planning and Design Manual, (Ministry of the Environment, 2003); and
- Drainage Management Manual, (Ministry of Transportation, 1995-1997).

1.4 PROPOSED DEVELOPMENT

The proposed development includes buildings consisting of the following:

- Building 'A' a 3-storey, 3,348 m², mixed use building including self-storage, office and retail spaces; and
- Building 'B' a 1-storey, 1,186 m² logistics building with the interior configured as one large open space 3-storeys in height.

In addition to the self-storage building, the site also includes an external storage unit area configured as four distinct groupings of storage units separated by access laneways. These storage units will be configured to allow surface drainage to flow beneath them without affecting their contents.

Building 'A' will reside along the west side of the property near the northern property limit while Building 'B' will also reside on the west side of the parcel, approximately 10.0 m south of the selfstorage building. The external storage units will be located near the south-east corner of the property along with snow storage and a dry pond. The site plan also includes guest parking along the flanks of the buildings with truck share parking along the north and south lot limits, all of which will be accessed through a new site entrance to Prospect Boulevard. The existing site access to Highway 12 is to be removed.

2 Existing Drainage Conditions

Information relating to existing topography, ground cover, and drainage patterns was obtained through a review of available plans and base mapping. A detailed survey was completed by J.D.Barnes Ltd. O.L.S. on January 22, 2024. A Pre-Development Drainage Plan (Drawing DP-1) illustrating the existing drainage conditions across the site and in surrounding area is included as Figure 2. The existing drainage conditions are described as follows:

- Green Geotechnical Ltd. (2023) defines the subsurface conditions as approximately 0.2 m 0.7 m of topsoil followed by silty sand with trace gravel. Ontario Soil Survey No. 29 (Simcoe County North) defines the site soils as Vasey sandy loam (Vasl);
- Groundwater on the site is generally deep with four of the five monitoring wells found to be dry during site visits on March 13 and July 29, 2024 as described in the Hydro-G report. One monitoring well in the southwest corner of the property identified groundwater at 3.3 m below ground surface during the March 13, 2024 site visit;
- The existing ground cover of the property is primarily trees with some open grass areas near the south-east corner;
- Existing topography of the site consists of an average grade of 6% in a west to east direction;
- All runoff from the site converges in the existing ditch near the southwest corner of Highway 12 and King Street; and
- All drainage from the site is ultimately conveyed to Georgian Bay via the Wye River.

2.1 EXISTING HYDROLOGY

The Rational Method has been used for the purpose of estimating existing peak flow rates. The interior site has been modelled as two catchments, (Catchment 101 and 102) with the external drainage areas expressed as three separate catchments (Catchment EXT-1, EXT-2, and EXT-3).

Catchment 101 is approximately 0.48 ha and is comprised mainly of unimproved areas such as grass, tress, and vegetation. An existing runoff coefficient (RC) of 0.20 is assigned in accordance with Town design standards and with reference table 1.07 of the Ministry of Transportation (MTO) Drainage Management Manual. Drainage within this catchment is conveyed north to the Highway 12 ditch.

Catchment 102 is approximately 1.87 ha and is comprised mainly of unimproved areas such as grass, trees, and vegetation with a corresponding RC of 0.20. Drainage within this catchment is conveyed south to the ditch along Prospect Boulevard.

External catchment EXT-1 is approximately 0.03 ha and consists of gravel and grassed areas from the adjacent property to the west and has a corresponding RC of 0.47. This external catchment is tributary to Catchment 102 along the west side yard property limit.

External catchment EXT-2 is approximately 0.04 ha and consists of gravel areas from the adjacent property to the west and has a corresponding RC of 0.60. This external catchment contributes to Catchment 102 along the west side yard property limit.

External catchment EXT-3 is approximately 0.03 ha and consists of gravel and grassed areas from the adjacent property to the west and has a corresponding RC of 0.47. This external catchment is tributary to Catchment 101 along the west side yard property limit.

All combined, the existing catchments represent an area of approximately 2.45 ha with a corresponding composite RC (CRC) of 0.21.

Supporting calculations for the Runoff Coefficients are provided in Appendix A.

Peak flows for the 1:2-year through 1:100-year return frequency design storms have been generated using the intensity-duration-frequency (IDF) parameters from the Town of Midland design standards. Peak flows for the entire site, which includes drainage to Highway 12, are summarized in Table 1. A separate column, extracting the portion of drainage conveyed directly to Highway 12, is also provided in Table 1 for comparison with post-development.

Supporting calculations are provided in Appendix B.

STORM	PEAK FLOW RATE (L/S)		
	Full Site	Highway 12 Only	
1:2-year	61.6	17.3	
1:5-year	81.2	22.7	
1:10-year	94.3	26.4	
1:25-year	121.8	34	
1:50-year	148.3	41.3	
1:100-year	169.8	47.3	

Table 1: Pre-Development -Peak Flow Summary

3 Stormwater Management Plan

The proposed SWM Plan has been developed to address potential adverse impacts the development may have on the local surface water features and on surface water quality. This SWM Plan is subject to review and approval in support of Zoning By-Law and Official Plan amendments. The proposed SWM plan is outlined in the following sections and illustrated on the design drawings included in Appendix G.

3.1 DESIGN CRITERIA

Based on the background information collected and our analysis of this information, a clear understanding of the potential impacts, and required mitigating measures, were gained. The following design criteria are to be satisfied in the proposed SWM report:

- Post-development peak flow rates for the site must be controlled to pre-development rates to ensure no adverse impacts to downstream landowners. As such, water quantity controls will be provided to attenuate post-development peak flow rates to pre-development flow rates.
- Post-development peak flow rates for the portion of drainage conveyed directly to Highway 12 must also be controlled to pre-development rates to ensure no adverse impacts to the Highway corridor.
- Water quality controls are to be provided to satisfy the MECP SWM Planning and Design Manual. Primarily, this would apply to the proposed parking lot and front yard areas as drainage from rooftops is considered to be clean. As such, "Enhanced" Level 1 water quality treatment corresponding with 80% long-term total suspended solids (TSS) removal is proposed.
- Recognizing the site is located in a Significant Groundwater Recharge Area (SGRA) and quantity sensitive Wellhead Protection Area (WHPA), best efforts are proposed to minimize changes in water balance between pre and post-development conditions.
- A siltation and erosion control plan is required to prevent the migration of sediment off-site during construction activities.

3.2 PROPOSED STORMWATER MANAGEMENT PLAN

A post-Development Drainage Plan (Drawing DP-2) is enclosed as Figure 3 and illustrates the proposed drainage conditions.

As the proposed building and pavement surfaces will increase the CRC, on-site stormwater quantity controls are required to reduce post-development peak flow rates to existing rates. The post-development site is modelled as four drainage catchments (Catchment 201, 202, 203, and 204) alongside the external drainage catchments which are unchanged.

Calculations of the post-development runoff coefficients are provided in Appendix A.

3.2.1 Uncontrolled Areas

Catchment 203 consists of grassed areas and part of the proposed parking lot which drain towards Highway 12. Drainage within this catchment is conveyed to the Highway 12 ditch via proposed swales, grading of grassed areas promoting sheet flow and a curb outlet with asphalt spillway from the parking area to minimize erosion of the slope. The catchment area is 0.20 ha and has a CRC of 0.39. The area of this catchment has been configured to ensure postdevelopment runoff matches pre-development rates from Catchment 101, thus eliminating need for quantity controls.

Calculations demonstrating a net reduction in peak flows conveyed directly toward Highway 12 are included in Appendix B and summarized in Table 2.

STODM	PEAK FLOW RATE (L/S)		
STORM	Pre Development (Catchment 101 & EXT-3)	Post-Development (Catchment 203 & EXT-3)	
1:2-year	17.3	16.7	
1:5-year	22.7	21.9	
1:10-year	26.4	25.3	
1:25-year	34	32.6	
1:50-year	41.3	39.6	
1:100-year	47.3	45.3	

Table 2: Highway 12 - Post to Pre-Development -Peak Flow Summary

Catchment 204 consists of a six-meter-wide strip of land along the east side of the property graded with 3:1 slopes to match existing grade at the property line. The catchment area is 0.17 ha and has a CRC of 0.20.

External drainage from Catchment EXT-3 will continue to drain through the site via Catchment 203 maintaining existing conditions.

3.2.2 Controlled Areas

Catchment 201 represents the balance of the proposed parking lot and the grassed areas nearest to Prospect Boulevard. The catchment has an area of 1.37 ha and a CRC of 0.76. Drainage within this catchment will be conveyed overland to a shallow swale behind the proposed snow storage area where it is then conveyed into an infiltration cell via two 450 mm diameter culverts. Additional detail on the infiltration cell is provided in Section 3.3. For less frequent storm events, an 8.5 m wide quantity weir is proposed in the berm between the swale and infiltration cell, ultimately allowing conveyance to the proposed dry pond.

Catchment 202 represents the building rooftops and grassed area on the west side of the property. The catchment has an area of 0.61 ha and a CRC of 0.77. Drainage from catchments 202 and EXT-2 will be conveyed to an infiltration cell proposed in the grassed area for quality treatment of runoff from the 25 mm storm event. Additional detail on the infiltration cell is provided in Section 3.3. For less frequent storm events, the walkway and asphalt area between the two buildings act as an overflow weir, conveying drainage to Catchment 201 and the dry pond via an overland flow route over the paved area.

Calculations of the weir and overland flows associated with on-site quantity conveyance are provided in Appendix C.

External drainage from Catchments EXT-1 and EXT-2 will continue to drain through the site via Catchments 201 and 202 respectively, maintaining existing conditions.

3.2.3 Quantity Controls and Storage

The Modified Rational Method was used to compute the uncontrolled post-development peak flows discharging from the proposed development and contributing external areas. Results of the hydrologic analysis of uncontrolled, post-development peak flows for the 1:2-year through 1:100-year return frequency design storms are summarized in Table 3 with supporting calculations provided in Appendix B.

		PEAK FLOW RATE (L/s)	
STORM	Catchment 201, 202, EXT-1 & EXT-2 (Uncontrolled)	Catchment 203, 204 and EXT-3 (Uncontrolled)	Total (Uncontrolled)
1:2-Year	334.3	21.4	355.7 (61.6)
1:5-Year	436.8	28.1	464.9 (81.2)
1:10-Year	505.5	32.6	538.1 (94.3)
1:25-Year	650.2	42.0	692.2 (121.8)
1:50-Year	785.0	51.0	836.0 (148.3)
1:100-Year	899.3	58.4	957.6 (169.8)

Note: (169.8) - Existing peak flow rate

Peak flow attenuation of the 1:2-year through 1:100-year return frequency design storms generated from Catchments 201 and 202 will be provided through storage of stormwater in the proposed dry pond and the eastern infiltration cell during infrequent events. For the purposes of quantity controls, water quality and infiltration cell volumes are excluded. A primary orifice control of 160 mm diameter is proposed in the outlet structure within the dry pond. The invert of the pipe conveying discharge from the control structure (perforated riser) is 215.29 m while the orifice control is proposed with preliminary centroid elevation of 215.38 m providing 10 mm of separation between the invert of the orifice and outlet pipe.

The dry pond will consist of 3:1 sidewall slopes configured with a maximum surface area of approximately 980.7 m². The channel and infiltration cell immediately upstream the dry pond have sidewalls graded with 3:1 slopes and a maximum surface area of approximately 632.6 m².

The base elevation of the dry pond is 215.30 m while the top of pond elevation is 217.10 m. The base elevation of the conveyance channel and infiltration cell meanwhile, is 216.50 m while the top elevation is also 217.10 m. At a maximum water surface elevation of 216.80, the combined areas provide storage for approximately 1,139 m³ of runoff.

The Modified Rational Method was utilized to determine operating characteristics of the SWM system including flow rates, storage volumes and water surface elevations for the 1:2-year through 1:100-year return frequency design storms which are summarized in Table 4.

Supporting calculations and stage-storage-discharge tables are provided in Appendix D.

	PEAK FLOW RATE (L/s)			CTODACE	
STORM	Catchment 201, 202 and EXT-1, EXT-2 (Controlled)	Catchment 203, 204 and EXT-3 (Uncontrolled)	Total (Controlled)	VOLUME (m ³)	ELEVATION (m)
1:2-Year	39.5	21.4	60.9 <i>(61.6)</i> 0.7	305	215.88
1:5-Year	46.0	28.1	74.1 <i>(81.2)</i> 7.1	418	216.05
1:10-Year	49.7	32.6	82.3 <i>(94.3)</i> 12.0	495	216.16
1:25-Year	56.5	42.0	98.5 <i>(121.8)</i> 23.3	662	216.39
1:50-Year	61.0	51.0	112.0 <i>(148.3)</i> 36.4	834	216.56
1:100-Year	63.9	58.4	122.2 <i>(169.8)</i> 47.5	974	216.68

Table 4: Quantity Control - Operating Characteristics Summary

Note: (169.8) - Existing peak flow rate, 47.5 - Difference in Post-Development and Existing flow.

Since the controlled post-development flows do not exceed the pre-development flows, the proposed stormwater system satisfies the quantity control requirements.

3.2.4 External Drainage

As previously noted, conveyance of uncontrolled surface drainage from external contributing catchments will generally be maintained post-development through grading design and establishment of swales to provide a positive outlet through the site. Existing grades will be matched along the perimeter of the site.

3.2.5 Emergency Flow Conveyance

For storms exceeding the 1:100-year event, or where partial blockage of the quantity control drains should occur, a proposed 15.0 m wide emergency overflow weir on the south side of the dry pond will be utilized to effectively convey stormwater off site. The overflow weir elevation of 216.80 m has been set above the 1:100-year design storm water level of 216.68 to ensure it is only active in emergency events. Located within the 0.3 m depth of freeboard at the top of the pond, the weir is capable of conveying the uncontrolled, post-development 1:100-year storm flow at a depth of approximately 0.13 m.

Calculations for the pond emergency overflow weir are included in Appendix D.

3.3 WATER QUALITY CONTROL

The proposed water quality treatment objective under the proposed condition will provide MECP enhanced level treatment corresponding to 80% TSS removal for on-site runoff.

Water quality control for the development will be provided via two infiltration cells, and LID practices consisting of grassed swales and roof leaders directed to pervious grass areas. While the dry pond is also anticipated to provide a measure of quality control, it has not been quantified due to anticipated low drawdown times.

3.3.1 Infiltration Cells

Two infiltration cells are proposed to treat direct runoff from Catchment 201 and 202 separately. Each cell was designed to provide a 48-hour drawdown time for the runoff volume generated by a 25 mm storm event, achieving 80% TSS removal in accordance with MECP and NVCA guidelines.

The infiltration cell treating catchment 202 has been proposed a minimum of 4.0 m from the building to mitigate interaction between the infiltrated water and footings of the building. The cell has a footprint of approximately 150 m² and underground storage depth of 2.10 m. The combined maximum storage volume provided when including surface storage is approximately 168.2 m³, exceeding the maximum 125.00 m³ storage required to infiltrate the 25 mm storm. The cell provides an infiltration rate of approximately 2.60 cubic meters per hour.

The infiltration cell treating catchment 201 has been proposed behind the snow storage area, with the proposed gently graded swale collecting and conveying drainage to the infiltration trench providing pre-treatment. The cell has an approximate footprint of 311.7 m² and underground storage depth of 2.10 m. The approximate maximum storage volume of 261.8 m³ provided exceeds the required storage of 259.0 m³ and provides an infiltration rate of 5.4 cubic meters per hour.

Supporting calculations relating to the infiltration cells are provided in Appendix E.

3.3.2 Low Impact Development Practices

Grassed swales have been specified in landscaped areas throughout the site including rear and side lot areas and behind the snow storage area to promote infiltration and to reduce post-development runoff. Roof leaders from the buildings will outlet at grade onto grassed areas draining directly into the infiltration cells to promote infiltration.

The above LID practices have been designed to promote infiltration at the site. They have been specified to complement the water quality and quantity functions of the dry SWM facility and infiltration cells, providing pre-treatment of runoff prior to infiltration.

3.3.3 Treatment Train Calculation Approach

As previously noted, a small area of the proposed parking surface in Catchment 203 is conveyed to the Highway 12 ditch, bypassing the proposed quality controls, however, is conveyed by grassed swales to an existing roadside ditch. The combined grassed swales and infiltration trench servicing Catchment 201 however, will exceed the 80% TSS removal requirement as they operate as a treatment train. When both catchments and their respective level of treatment are considered together however, an overall TSS removal of 80% for the site is achieved if the swales are considered to provide 36% TSS removal independently. Catchments 202 and 204 are excluded from the calculation as they consist of surface features which are considered to be clean, and not requiring water quality control.

Supporting calculations are provided in Appendix E.

3.4 WATER BUDGET

A preliminary water budget has been prepared using the Thornthwaite and Mather approach to determine water surplus after evapotranspiration and it should be noted the site is within a WHPA for municipal water quantity SGRA. Our following analysis is based on the Midland WPCP Climate Normal Data for 1997 – 2016 (Environment Canada).

Under existing conditions, the site has an infiltration factor of 0.6. Under post-development conditions, the area of pervious land cover will decrease, and the infiltration factor will also decrease to 0.5 due to the change in land cover from wooded to pasture. As such, the annual infiltration is estimated to decrease by 5,486 m³ under the proposed conditions.

The proposed infiltration cells promoting water balance have similar composition with varying footprints, each one matching its respective catchment area. For Catchment 201, the cell design consists of 6.1 m wide, and 51.1 m long area and captures runoff from the most frequent storm events. Runoff from the less frequent storm events will drain to the dry pond via a channel.

The proposed cell for 202 is 2.5 m wide and 60.0 m long and captures runoff from the most frequent storm events with excess runoff overtopping a proposed weir into the parking lot.

Underlying the topsoil and sod for both cells is a 1.45 m thick layer of 19 mm clear stone over a 0.5 m thick layer of sand to provide filtration prior to infiltrating into native material. To prevent migration of fines into the clear stone component, the clear stone volume is wrapped in a permeable geotextile filter fabric.

The proposed infiltration cells further promote infiltration into the native soils, with potential to increase infiltration by 2,851 m³ annually in comparison with existing figures.

Supporting calculations are provided in Appendix F.

4 Erosion Control and Grading

Siltation and erosion controls will be implemented for all construction activities, including removals, earthwork operations, service construction, building construction, paving and grading works. Details of the siltation and erosion controls are shown on the Erosion & Siltation Control Plan drawing (ESC-1) in Appendix G. A number of standard practices which will be implemented are summarized as follows:

- The disturbance area and activities will be minimized where possible;
- The smallest possible land area will be exposed for the shortest amount of time;
- Heavy duty silt control fences will be erected coincident with the property boundary prior to commencement of grading operations to control sediment movement;
- A stone mud mat will be implemented at the construction entrance;
- Catch basins on-site and downstream of the site will have grates wrapped in permeable geotextile to prevent migration of sediment into the storm sewers;
- Straw bale check dams will be installed in existing ditches and drainage features downstream of anticipated disturbance;
- Regular inspection of control measures shall be instituted and repairs made as necessary; and
- Promptly re-vegetating disturbed areas following completion of construction works within the site.

5 Summary

This report has been prepared to document the stormwater management plan recommended for the subject property as well as the applicable design criteria and proposed siltation and erosion controls. The preliminary SWM plan ensures the development can be constructed in accordance with all applicable municipal and provincial guidelines while minimizing the impact of the development on the local drainage systems. The SWM design criteria described in Section 3.1 of this report will be achieved and is summarized as follows:

- Post-development peak flow rates will be controlled to lower than existing flow rates for the 1:2-year through 1:100-year storm events. Water quantity controls will be provided via controlled discharge through a 160 mm diameter orifice plate combined with a dry pond.
- Post-development peak flow rates conveyed directly to Highway 12 will be maintained below existing flow rates through proposed grading.
- "Enhanced" Level 1 water quality controls corresponding to 80% TSS removal are provided through inclusion of infiltration cells grassed swales for pre-treatment.
- Best efforts have been provided to mitigate changes in water balance due to the proposed development achieving a surplus compared with pre-development condition. These measures include out letting roof drains onto pervious ground surfaces and two infiltration cells to promote infiltration into native soil.

Appendix A: Composite Runoff Coefficients

PROJECT	16728 Highway 12, Midland	FILE	32483	16	
	U-Haul Development	DATE	18-Se	ep-202	4
SUBJECT	Pupoff Coofficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	1	OF	15

Pre-Development	Condition		
Catchment Parame	eters		
Catchment ID:	EXT-1	Soil Symbol:	Vasl
Max Elev. (m):	224.50	Soil Series:	Vasey
Min Elev. (m):	223.41	Hydrologic Soils Group:	AB
Length (m):	4.50	Soil Texture:	Sand Loam
Slope (%):	24.22%	Runoff Coefficient Type:	1

Urban Runoff Coefficient					
Description	Min.	Max.	Proposed	Area (ha)	
Gravel and Shoulders	0.40	0.60	0.60	0.020	
Unimproved Areas	0.10	0.30	0.20	0.010	

Rural Runoff Coefficient				
Description	Suggested	Proposed	Area (ha)	

Bare Rock Runoff Coefficient				
Property Coverage	Property Coverage (%) Suggested Proposed Area (ha			Area (ha)
	0.07			
Total Area:	0.03			
Composite Runoff Coefficient:	0.47			
e of Concentration				
Calculation Method:	Bransby-Will	liams Formula		
Time of Concentration (mins):	0.19	Proposed	d Time of Co	ncentration (r

PROJECT	16728 Highway 12, Midland	FILE	32481	.6	
	U-Haul Development	DATE	18-Se	p-2024	ļ
SUBJECT	Runoff Coefficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	2	OF	15

Pre-Development	Condition		
Catchment Parame	eters		
Catchment ID:	EXT-2	Soil Symbol:	Vasl
Max Elev. (m):	224.47	Soil Series:	Vasey
Min Elev. (m):	223.19	Hydrologic Soils Group:	AB
Length (m):	4.30	Soil Texture:	Sand Loam
Slope (%):	29.77%	Runoff Coefficient Type:	1

Urban Runoff Coefficient					
Description	Min.	Max.	Proposed	Area (ha)	
Gravel and Shoulders	0.40	0.60	0.60	0.04	

Rural Runoff Coefficient				
Description	Suggested	Proposed	Area (ha)	

Bare Rock Runoff Coefficient				
Property Coverage	Property Coverage (%) Suggested Proposed Are			Area (ha)
Total Area:	0.04			
Composite Runoff Coefficient:	0.60			
ime of Concentration				
Calculation Method:	Bransby-Wil	liams Formula		
Time of Concentration (mins):	0.17	Proposed	d Time of Co	ncentration (m

PROJECT	16728 Highway 12, Midland	FILE	32481	.6	
	U-Haul Development	DATE	18-Se	p-2024	1
SUBJECT	Runoff Coefficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	3	OF	15

Pre-Development	Condition		
Catchment Parame	eters		
Catchment ID:	EXT-3	Soil Symbol:	Vasl
Max Elev. (m):	224.47	Soil Series:	Vasey
Min Elev. (m):	223.19	Hydrologic Soils Group:	AB
Length (m):	4.30	Soil Texture:	Sand Loam
Slope (%):	29.77%	Runoff Coefficient Type:	1

Urban Runoff Coefficient							
Description	Min.	Max.	Proposed	Area (ha)			
Gravel and Shoulders	0.40	0.60	0.60	0.02			
Unimproved Areas	0.10	0.30	0.20	0.01			

Rural Runoff Coefficient						
Description Suggested Proposed Area						

Bare Rock Runoff Coefficient				
Property Coverage (Property Coverage (%)			Area (ha)
	0.07			
Iotal Area:	0.03			
Composite Runoff Coefficient:	0.47			
ne of Concentration				
Calculation Method: E	Bransby-Will	iams Formula		
Time of Concentration (mins):	0.18	Proposed	d Time of Co	ncentration (

PROJECT	16728 Highway 12, Midland	FILE	32483	16	
	U-Haul Development	DATE	18-Se	ep-202	4
SUBJECT	Pupoff Coofficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	4	OF	15

Pre-Development	Condition		
Catchment Parame	eters		
Catchment ID:	101	Soil Symbol:	Vasl
Max Elev. (m):	222.55	Soil Series:	Vasey
Min Elev. (m):	215.06	Hydrologic Soils Group:	AB
Length (m):	117.50	Soil Texture:	Sand Loam
Slope (%):	6.37%	Runoff Coefficient Type:	1

Urban Runoff Coefficient							
Description	Min.	Max.	Proposed	Area (ha)			
Unimproved Areas	0.10	0.30	0.20	0.48			

Rural Runoff Coefficient						
Description Suggested Proposed Area (

Bare Rock Runoff Coefficient						
Property Coverage	Property Coverage (%)			Proposed	Area (ha)	
Total Area:	0.48					
Composite Runoff Coefficient:	0.20					
Time of Concentration						
Calculation Method:	Airport Meth	nod				
Time of Concentration (mins):	17.26		Proposed	Time of Cor	ncentration (n	nins):

ROJECT	16728 Highway 12, Midland	FILE	32481	L6	
	U-Haul Development	DATE	18-Se	p-2024	1
UBJECT	Runoff Coefficient Calculations	NAME	JH		
	Runon Coemcient Calculations	PAGE	5	OF	15

Pre-Development	Condition		
Catchment Parame	eters		
Catchment ID:	102	Soil Symbol:	Vasl
Max Elev. (m):	223.36	Soil Series:	Vasey
Min Elev. (m):	215.20	Hydrologic Soils Group:	AB
Length (m):	219.30	Soil Texture:	Sand Loam
Slope (%):	3.72%	Runoff Coefficient Type:	1

Urban Runoff Coefficient							
Description	Min.	Max.	Proposed	Area (ha)			
Unimproved Areas	0.10	0.30	0.20	1.87			

Rural Runoff Coefficient					
Description	Suggested	Proposed	Area (ha)		

Bar	e Rock Runo	ff Coef	ficient			
Property Coverage	(%)		Suggested	Proposed	Area (ha)	
Total Area:	1.87					
Composite Runoff Coefficient:	0.20					
Time of Concentration						
Calculation Method:	Airport Meth	nod				
Time of Concentration (mins):	28.16		Proposed	d Time of Co	ncentration (r	nins):

PROJECT	16728 Highway 12, Midland	FILE	324816
	U-Haul Development	DATE	18-Sep-
SUBJECT		NAME	JH

Runoff Coefficient Calculations

DATE	18-5	Sep-202	24
NAME	JH		
PAGE	6	OF	15

Pre-Development	Condition	
Catchment Parame	eters	
Catchment ID:	Pre-Dev.	Soil Symbol:
Max Elev. (m):	223.36	Soil Series:
Min Elev. (m):	215.20	Hydrologic Soils Group:
Length (m):	219.30	Soil Texture:
Slope (%):	3.72%	Runoff Coefficient Type:

Urba	an Runoff Coeff	icient		
Description	Min.	Max.	Proposed	Area (ha)
Unimproved Areas	0.10	0.30	0.20	2.37
Gravel and Shoulders	0.40	0.60	0.60	0.08

Rural Runoff Coeffi	cient		
Description	Suggested	Proposed	Area (ha)

Bare	Rock Runo	ff Coeff	ficient			
Property Coverage	(%)		Suggested	Proposed	Area (ha)	
Total Area:	2.45					
Composite Runoff Coefficient:	0.21					
Time of Concentration						
Calculation Method:	Airport Meth	nod				
Time of Concentration (mins):	27.75		Proposed	d Time of Cor	ncentration (m	ins):

PROJECT	16728 Highway 12, Midland	FILE	3248	16	
	U-Haul Development	DATE	18-Se	ep-202	24
SUBJECT	Pupoff Coofficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	7	OF	15

Post-Development Condition			
Catchment Parame	eters		
Catchment ID:	201	Soil Symbol:	Vasl
Max Elev. (m):	223.60	Soil Series:	Vasey
Min Elev. (m):	217.00	Hydrologic Soils Group:	AB
Length (m):	210.70	Soil Texture:	Sand Loam
Slope (%):	3.13%	Runoff Coefficient Type:	1

Urba	an Runoff Coeff	icient		
Description	Min.	Max.	Proposed	Area (ha)
Asphalt/Concrete Pavement	0.80	0.95	0.95	1.02
Lawns	0.10	0.15	0.20	0.35

Rural Runoff Coeffic	cient		
Description	Suggested	Proposed	Area (ha)

Bare	Rock Runo	ff Coefficient		
Property Coverage	(%)	Suggested	Proposed	Area (ha)
Total Area:	1.37			
Composite Runoff Coefficient:	0.76			
ne of Concentration				
Calculation Method: E	Bransby-Will	iams Formula		
Time of Concentration (mins):	9.26	Proposed	d Time of Co	ncentration (

PROJECT	^{ROJECT} 16728 Highway 12, Midland		3248
	U-Haul Development	DATE	18-S
SUBJECT	Pupoff Coefficient Calculations	NAME	JH
		DACE	

Vasl Vasey AB Sand Loam 1
 FILE
 324816

 DATE
 18-Sep-2024

 NAME
 JH

 PAGE
 8
 0F
 15

Post-Development Condition			
Catchment Parame	eters		
Catchment ID:	202		
Max Elev. (m):	223.97		
Min Elev. (m):	219.68		
Length (m):	68.00		
Slope (%):	6.31%		

Urban Runoff Coefficient						
Description	Min.	Max.	Proposed	Area (ha)		
Lawns	0.10	0.15	0.20	0.15		
Rooftops	0.70	0.95	0.95	0.45		
Asphalt/Concrete Pavement	0.80	0.95	0.95	0.01		

Rural Runoff Coefficient						
Description Suggested Proposed Area						

Bare Rock Runoff Coefficient					
Property Coverage	Property Coverage (%)			Area (ha)	
Total Area:	0.61				
Composite Runoff Coefficient: 0.77					
Time of Concentration					
Calculation Method:	Bransby-Wil	liams Formula			
Time of Concentration (mins):	2.82	Proposed	Time of Cor	ncentration (mi	

PROJECT	ROJECT 16728 Highway 12, Midland		324816
	U-Haul Development	DATE	18-Sep-
SUBJECT	Dunoff Coofficient Coloulations	NAME	JH

Runoff Coefficient Calculations

DATE	18-Sep-2024				
NAME	JH				
PAGE	9	OF	15		

Post-Developmen	t Condition	
Catchment Param	eters	
Catchment ID:	203	Soil Symbol:
Max Elev. (m):	223.15	Soil Series:
Min Elev. (m):	215.10	Hydrologic Soils Group:
Length (m):	124.00	Soil Texture:
Slope (%):	6.49%	Runoff Coefficient Type:

Urban Runoff Coefficient							
Description Min. Max. Proposed Area (I							
Lawns	0.10	0.15	0.20	0.15			
Asphalt/Concrete Pavement	0.80	0.95	0.95	0.05			

Rural Runoff Coefficient						
Description Suggested Proposed Area						

Bare Rock Runoff Coefficient						
Property Coverage	Suggested	Proposed	Area (ha)			
Total Area:	0.20					
Composite Runoff Coefficient: 0.39						
ime of Concentration						
Calculation Method:	Airport Method					
Time of Concentration (mins):	13.95	Proposed	d Time of Coi	ncentration (r		

PROJECT	16728 Highway 12, Midland	FILE	324816		
	U-Haul Development		18-Se	p-2024	1
SUBJECT	Runoff Coofficient Calculations	NAME JH			
	Runon coencient calculations	PAGE	10	OF	15

Post-Development	Condition		
Catchment Parame	eters		
Catchment ID:	204	Soil Symbol:	Vasl
Max Elev. (m):	217.00	Soil Series:	Vasey
Min Elev. (m):	215.20	Hydrologic Soils Group:	AB
Length (m):	7.80	Soil Texture:	Sand Loam
Slope (%):	23.08%	Runoff Coefficient Type:	1

Urban Runoff Coefficient					
Description	Min.	Max.	Proposed	Area (ha)	
Lawns	0.15	0.20	0.20	0.17	

Rural Runoff Coefficient				
Description	Suggested	Proposed	Area (ha)	

Bare	Rock Runo	ff Coef	ficient		
Property Coverage	Property Coverage (%)			Proposed	Area (ha)
Total Area:	0.17				
Composite Runoff Coefficient: 0.20					
me of Concentration					
Calculation Method: /	Airport Meth	nod			
Time of Concentration (mins):	2.91		Proposed	d Time of Cor	ncentration (

PROJECT	^{ECT} 16728 Highway 12, Midland		324816
	U-Haul Development	DATE	18-Sep-20
SUBJECT	Pupoff Coefficient Calculations	NAME	JH
		B 1 0 E	

nd		32481	.6	
	DATE	18-Se	p-2024	ŀ
tions	NAME	JH		
ILIONS	PAGE	11	OF	15

Post-Development Condition

Catchment Parameters

Catchment ID:	203, 204 & EXT-	3
Max Elev. (m):	223.15	
Min Elev. (m):	215.10	
Length (m):	124.00	
Slope (%):	6.49%	

Soil Symbol:	Vasl
Soil Series:	Vasey
Hydrologic Soils Group:	AB
Soil Texture:	Sand Loam
Runoff Coefficient Type:	1

Urban Runoff Coefficient						
Description Min. Max. Proposed A						
Unimproved Areas	0.10	0.30	0.20	0.33		
Gravel and Shoulders	0.40	0.60	0.60	0.02		
Asphalt/Concrete Pavement	0.80	0.95	0.95	0.05		

Rural Runoff Coefficient				
Description	Suggested	Proposed	Area (ha)	

Bare	Bare Rock Runoff Coefficient				
Property Coverage	(%)		Suggested	Proposed	Area (ha)
Total Area:	0.40				
Composite Runoff Coefficient:	0.31				
ime of Concentration					
Calculation Method:	Airport Meth	od			
Time of Concentration (mins):	15.40		Proposed	d Time of Cor	ncentration (r

Slope (%):

PROJECT	16728 Highway 12, Midland U-Haul Development
	U-Haul Development

FILE 324816 DATE 18-Sep-2024 NAME JH PAGE 12 OF 15

Runoff Coefficient Calculations

1

Post-Development	t Condition								
Catchment Parameters									
Catchment ID:	201,202, EXT-1	& EXT-2	Soil Symbol:	Vasl					
Max Elev. (m):	223.00	Soil Series:		Vasey					
Min Elev. (m):	215.00	Hydrologic Soils Group:		AB					
Length (m):	148.00	Soil Texture:		Sand Loam					

Land Cover - MTO Drainage Management Manual (1997), Design Chart 1.07

5.41%

Urban Runoff Coefficient						
Description	Min.	Max.	Proposed	Area (ha)		
Asphalt/Concrete Pavement	0.80	0.95	0.95	1.03		
Rooftops	0.70	0.95	0.95	0.45		
Lawns	0.10	0.15	0.20	0.51		
Gravel and Shoulders	0.40	0.60	0.60	0.06		

SUBJECT

Runoff Coefficient Type:

Rural Runoff Coefficient					
Description	Suggested	Proposed	Area (ha)		

Bare Rock Runoff Coefficient						
Property Coverage	(%)		Suggested	Proposed	Area (ha)	
Total Area:	2.05					
Composite Runoff Coefficient:	0.75					
Time of Concentration						
Calculation Method:	Bransby-Will	liams F	ormula			
Time of Concentration (mins):	5.60		Proposed	d Time of Cor	ncentration (n	nins):

PROJECT 16728 Highway 12, Midland	16728 Highway 12, Midland	FILE	32483	16	
	U-Haul Development		18-Se	ep-202	4
SUBJECT Pupoff Coofficient Calculations	NAME	JH			
	Runon Coefficient Calculations	PAGE	13	OF	15

Catchment ParametersCatchment ID:EXT-2 & 202Soil Symbol:Max Elev. (m):223.00Soil Series:Min Elev. (m):215.00Hydrologic Soils Group:
Catchment ID:EXT-2 & 202Soil Symbol:Max Elev. (m):223.00Soil Series:Min Elev. (m):215.00Hydrologic Soils Group:
Max Elev. (m):223.00Soil Series:Min Elev. (m):215.00Hydrologic Soils Group:
Min Elev. (m): 215.00 Hydrologic Soils Group:
Length (m): 148.00 Soil Texture:
Slope (%): 5.41% Runoff Coefficient Type:

Urban Runoff Coefficient					
Description	Min.	Max.	Proposed	Area (ha)	
Gravel and Shoulders	0.40	0.60	0.60	0.04	
Lawns	0.10	0.15	0.20	0.15	
Rooftops	0.70	0.95	0.95	0.45	
Asphalt/Concrete Pavement	0.80	0.95	0.95	0.01	

Rural Runoff Coefficient					
Description	Suggested	Proposed	Area (ha)		

Bare Rock Runoff Coefficient						
Property Coverage	(%)	Suggested	Proposed	Area (ha)		
Total Area:	0.65					
Composite Runoff Coefficient:						
me of Concentration						
Calculation Method:	Bransby-Wil	liams Formula				
Time of Concentration (mins):	6.28	Proposed	d Time of Co	ncentration (r		

PROJECT	16728 Highway 12, Midland	FILE	3248	16	
U-Haul Development		DATE	18-Se	ep-202	4
SUBJECT Runoff Coefficient Calculations	NAME	JH			
	Runon Coefficient Calculations	PAGE	14	OF	15

Post-Development Condition			
Catchment Parameters			

Catchment ID:	EXT-3 & 203
Max Elev. (m):	223.15
Min Elev. (m):	215.10
Length (m):	124.00
Slope (%):	6.49%

Soil Symbol:	Vasl
Soil Series:	Vasey
Hydrologic Soils Group:	AB
Soil Texture:	Sand Loam
Runoff Coefficient Type:	1

Urban Runoff Coefficient								
Description	Min.	Max.	Proposed	Area (ha)				
Gravel and Shoulders	0.40	0.60	0.60	0.02				
Unimproved Areas	0.10	0.30	0.20	0.01				
Lawns	0.10	0.15	0.20	0.15				
Asphalt/Concrete Pavement	0.80	0.95	0.95	0.05				

Rural Runoff Coefficient							
Description Suggested Proposed Area							

Bare	Bare Rock Runoff Coefficient						
Property Coverage	(%)		Suggested	Proposed	Area (ha)		
Total Area:							
Composite Runoff Coefficient: 0.40							
ime of Concentration							
Calculation Method: Airport Method							
Time of Concentration (mins):	13.75		Proposed	d Time of Coi	ncentration (

PROJECT	16728 Highway 12, Midland	FILE	32483	16	
U-Haul Development		DATE	18-Se	ep-202	4
SUBJECT	Pupoff Coefficient Calculations	NAME	JH		
	Runon Coefficient Calculations	PAGE	15	OF	15

Post-Development	Condition		
Catchment Parame	eters		
Catchment ID:	Post-Total	Soil Symbol:	Vasl
Max Elev. (m):	223.00	Soil Series:	Vasey
Min Elev. (m):	215.00	Hydrologic Soils Group:	AB
Length (m):	148.00	Soil Texture:	Sand Loam
Slope (%):	5.41%	Runoff Coefficient Type:	1

Urban Runoff Coefficient								
Description	Min.	Max.	Proposed	Area (ha)				
Asphalt/Concrete Pavement	0.80	0.95	0.95	1.08				
Rooftops	0.70	0.95	0.95	0.45				
Lawns	0.10	0.15	0.20	0.84				
Gravel and Shoulders	0.40	0.60	0.60	0.08				

Rural Runoff Coefficient							
Description	Suggested	Proposed	Area (ha)				

Bare Rock Runoff Coefficient								
Property Coverage	(%)	Suggested	Proposed	Area (ha)				
Total Area:	2.45							
Composite Runoff Coefficient: 0.68								
Time of Concentration								
Calculation Method:	Bransby-Wil	liams Formula						
Time of Concentration (mins):	5.50	Proposed	d Time of Coi	ncentration (mins)				

Appendix B: Modified Rational Method Calculations

ROJECT 16728 Highway 12, Midland		FILE	32481	.6	
	U-Haul Development		17-Se	p-2024	1
UBJECT	Modified Rational Method Calcs. Full Development Site	NAME	JH		
		PAGE	1	OF	1

Municipality /	IDF Curve Source:	Town of Midland				
Pre-Development		Post-Development	Controllable		Uncontrolled	
Catchment ID:	Pre-Dev.	Catchment ID:	EXT-1,2 & 201,202		EXT-3 & 203,204	
Catchment Area (ha):	2.45	Catchment Area (ha):	2.05		0.40	
1:5-Year Runoff Coef:	0.21	1:5-Year Runoff Coef:	0.75		0.31	
Time of Conc. (min):	27.7	Time of Conc. (min):	10.0		15.4	

Rational Method Calculations

Design St	orm	2	5	10	25	50	100
	А	807.44	1135.40	1387.00	1676.20	1973.10	2193.10
IDF Curve	В	6.75	7.50	7.97	8.30	9.00	9.04
	С	0.828	0.841	0.852	0.858	0.868	0.871
Pre-Dev.	i (mm/hr)	43.08	56.82	66.00	77.45	86.50	95.02
	С	0.21	0.21	0.21	0.23	0.25	0.26
Post-Dev.	i (mm/hr)	78.28	102.27	118.36	138.40	153.18	168.45
Controllable	С	0.75	0.75	0.75	0.83	0.90	0.94
Post-Dev.	i (mm/hr)	62.11	81.57	94.62	110.86	123.28	135.53
Un-controlled	С	0.31	0.31	0.31	0.34	0.37	0.39

Peak Flow Summary (L/s)

Storm	Q _{Existing}	Q _{Uncontrolled}	Q _{Controllable}	Q _{Sub-Total}	Q _{Ex} - Q _{Sub}	Q _{Controls}	Q _{Total}	Q _{Ex} - Q _{Tot}
2	61.6	21.4	334.3	355.7	-294.1	39.5	60.9	0.7
5	81.2	28.1	436.8	464.9	-383.7	46.0	74.1	7.1
10	94.3	32.6	505.5	538.1	-443.8	49.7	82.3	12.0
25	121.8	42.0	650.2	692.2	-570.4	56.5	98.5	23.3
50	148.3	51.0	785.0	836.0	-687.6	61.0	112.0	36.4
100	169.8	58.4	899.3	957.6	-787.9	63.9	122.2	47.5

Required Volume Summary (m³)

Duration (min)	2	5	10	25	50	100	Time Step
75	304	416	491	653	817	948	5
80	305	417	493	656	822	954	
85	305	418	494	659	826	959	
90	304	418	494	661	829	963	
95	303	418	495	662	831	967	
100	303	418	494	662	833	969	
105	301	417	494	662	834	971	
110	300	416	493	662	834	973	
115	298	414	491	661	834	973	
120	297	412	490	660	834	974	
125	295	411	488	659	833	974	

PROJECT	16728 Highway 12, Midland	FILE	FILE 324816				
	U-Haul Development	DATE	17-Sep-2024				
SUBJECT	Modified Rational Method Calcs.	NAME	JN				
	Drainage to Highway 12	PAGE	1	OF	1		

Municipality /	IDF Curve Source:	Town of Midland				
Pre-Development		Post-Development	Controllable		Uncontrolled	
Catchment ID:	Pre-Dev.	Catchment ID:	N/A		EXT-3 & 203	
Catchment Area (ha):	0.51	Catchment Area (ha):	0.00		0.23	
1:5-Year Runoff Coef:	0.21	1:5-Year Runoff Coef:	0.00		0.40	
Time of Conc. (min):	17.3	Time of Conc. (min):	0.0		14.2	

Rational Method Calculations

Design St	orm	2	5	10	25	50	100
	А	807.44	1135.40	1387.00	1676.20	1973.10	2193.10
IDF Curve	В	6.75	7.50	7.97	8.30	9.00	9.04
	С	0.828	0.841	0.852	0.858	0.868	0.871
Dro Dov	i (mm/hr)	58.12	76.41	88.67	103.94	115.70	127.18
FIE-Dev.	С	0.21	0.21	0.21	0.23	0.25	0.26
Post-Dev.	i (mm/hr)	166.13	208.56	236.61	272.75	293.00	322.28
Controllable	С	0.00	0.00	0.00	0.00	0.00	0.00
Post-Dev. Un-controlled	i (mm/hr)	65.17	85.51	99.16	116.14	129.04	141.87
	С	0.40	0.40	0.40	0.44	0.48	0.50

Peak Flow Summary (L/s)

Storm	Q _{Existing}	Q _{Uncontrolled}	Q _{Controllable}	$Q_{Sub-Total}$	Q _{Ex} - Q _{Sub}	Q _{Controls}	Q _{Total}	Q _{Ex} - Q _{Tot}
2	17.3	16.7	0.0	16.7	0.6	0.0	16.7	0.6
5	22.7	21.9	0.0	21.9	0.9	0.0	21.9	0.9
10	26.4	25.3	0.0	25.3	1.0	0.0	25.3	1.0
25	34.0	32.6	0.0	32.6	1.4	0.0	32.6	1.4
50	41.3	39.6	0.0	39.6	1.7	0.0	39.6	1.7
100	47.3	45.3	0.0	45.3	2.0	0.0	45.3	2.0

PROJECT	16728 Highway 12, Midland	FILE	32483	16	
	U-Haul Development			ep-202	4
SUBJECT	BJECT Modified Rational Method Calcs		JN		
	Peak Flow from Catch 202 to 201	PAGE	1	OF	1

Municipality / I	DF Curve Source:	Town of Midland					
Pre-Development		Post-Development	Controllable		Uncontrolled		
Catchment ID:	N/A	Catchment ID:	N/A		EXT-2 & 202		
Catchment Area (ha):		Catchment Area (ha):			0.65		
1:5-Year Runoff Coef:		1:5-Year Runoff Coef:			0.76		
Time of Conc. (min):		Time of Conc. (min):			10.0		

Rational Method Calculations

Design St	orm	2	5	10	25	50	100
	А	807.44	1135.40	1387.00	1676.20	1973.10	2193.10
IDF Curve	В	6.75	7.50	7.97	8.30	9.00	9.04
	С	0.828	0.841	0.852	0.858	0.868	0.871
Dro Dov	i (mm/hr)	166.13	208.56	236.61	272.75	293.00	322.28
FTE-Dev.	С	0.00	0.00	0.00	0.00	0.00	0.00
Post-Dev.	i (mm/hr)	166.13	208.56	236.61	272.75	293.00	322.28
Controllable	С	0.00	0.00	0.00	0.00	0.00	0.00
Post-Dev.	i (mm/hr)	78.28	102.27	118.36	138.40	153.18	168.45
Un-controlled	С	0.76	0.76	0.76	0.84	0.91	0.95

Peak Flow Summary (L/s)

Storm	Q _{Existing}	Q _{Uncontrolled}	Q _{Controllable}	$Q_{Sub-Total}$	Q _{Ex} - Q _{Sub}	Q _{Controls}	Q _{Total}	Q _{Ex} - Q _{Tot}
2	0.0	107.4	0.0	107.4	-107.4	0.0	107.4	-107.4
5	0.0	140.3	0.0	140.3	-140.3	0.0	140.3	-140.3
10	0.0	162.4	0.0	162.4	-162.4	0.0	162.4	-162.4
25	0.0	208.9	0.0	208.9	-208.9	0.0	208.9	-208.9
50	0.0	252.2	0.0	252.2	-252.2	0.0	252.2	-252.2
100	0.0	288.9	0.0	288.9	-288.9	0.0	288.9	-288.9

Appendix C: Weir and Channel Flow Calculations

PROJECT	16728 Highway 12, Midland	FILE	324816			
	U-Haul Development	DATE	18-Sep-2024			
SUBJECT	Secondary Overflow Weir Flow -	NAME	JH			
	West	PAGE	1	OF	1	

Overflow Weir Parameters			_	Left Flank	Right Flan	
Overflow Weir Base Elevation (m):	219.68	Grade	(%):	6.0%	5.3%	
Overflow Weir Width, B (m):	1.0	Width	(m):	2.5	2.9	
Weir Crest Length, L (m):	0.2					
Overflow Weir Material:	Concrete, Fi	nished				
ε (mm):	1					
δ/L:	0.01722		$\delta/L \approx 0.001 + 0.2 \times$			
		So	ource: E rested w	equation 10.57 fo	or round-nosed	
100 Year Storm Ponding Depth and Over	flow Elevati	on ^{Fr}	rank M. cGraw-	White, <i>Fluid Me</i> Hill Companies I	chanics Fifth E	
1:100-Year Uncontrolled Flow (L/s):	288.90		colum			
Overflow Weir Base Elevation (m):	219.68					
Structure T/G Elevation (m):	219.46					
Required Weir Head (m):	0.153				$\delta_{I,3}$	
C _d :	0.53			$C_d \approx 0.544 \times ($	$(1 - \frac{H_{L}}{H_{L}})^{1/2}$	
Qweir, (L/s):	288.90			$O_{Wair} = C_d B a$	$^{0.5}H^{3/2}$	
				enen -u-o		
Max Ponding Over T/G (m):	0.373		1	Note: for flo	w over flan	
Weir Overflow Elevation (m):	219.83		1	⊣ in Q _{weir} for "Reauired V	rmuia is Veir Head"	

Detailed Weir Flow Table

Elevation	h _{weir}	Weir C _d	Q _{Weir}
(m)	(m)		(L/s)
219.68	0.00		0.00
219.69	0.01	0.35	4.26
219.70	0.02	0.44	12.91
219.71	0.03	0.47	24.26
219.72	0.04	0.49	37.79
219.73	0.05	0.50	53.17
219.74	0.06	0.51	70.21
219.75	0.07	0.51	88.77
219.76	0.08	0.52	108.72
219.77	0.09	0.52	129.98
219.78	0.10	0.52	152.46
219.80	0.12	0.53	200.88
219.82	0.14	0.53	253.55
219.84	0.16	0.53	310.15
219.86	0.18	0.53	370.44
219.88	0.20	0.53	434.19

	Left Flank	Right Flank
Grade (%):	6.0%	5.3%
Width (m):	2.5	2.9

l broaddition, 2003.

> nks, divided by 2.

PROJECT	16728 Highway 12, Midland U-Haul Development	FILE DATE	32481 18-Se	.6 p-2024	1
SUBJECT	Overflow Channel	NAME	JH		
	Catchment 202 to 201	PAGE	1	OF	1

	Region/Municipality					
	Midland					
		T _C (in minutes))			
		10				
Event	^	D	C	Intensity		
Event	A	D	C	(mm/hr)		
1-Year						
2-Year	807.44	6.75	0.828	78.28		
5-Year	1135.4	7.5	0.841	102.27		
10-Year	1387	7.97	0.852	118.36		
25-Year	1676.2	8.3	0.858	138.40		
50-Year	1973.1	9	0.868	153.18		
100-Year	2193.1	9.04	0.871	168.45		

Peak Runoff Flow Rate							
Area Name	EXT-2	202					
Area (ha)	0.04	0.61					
Runoff	0.60	0.77					
Event	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q _{Total}
1-Year							
2-Year	5.22	102.14					107.35
5-Year	6.82	133.45					140.26
10-Year	7.89	154.44					162.33
25-Year	10.15	198.65					208.80
50-Year	12.26	239.84					252.10
100-Year	14.04	274.75					289.56

	Ditch Flows								
Manning's n:	0.013	Event	Q	depth	A _{Base}	A _{Sides}	P _{Base}	P _{Sides}	V
Ditch Slope:	2.00%	Event	(m ³ /s)	(m)	(m ²)	(m ²)	(m)	(m)	(m/s)
L. Side Slope 1:	15	1-Year							
R. Side Slope 1:	16	2-Year	0.107	0.051	0.051	0.041	1.000	1.589	1.170
Base Width (m):	1	5-Year	0.140	0.058	0.058	0.053	1.000	1.816	1.259
		10-Year	0.162	0.063	0.063	0.061	1.000	1.951	1.310
		25-Year	0.209	0.071	0.071	0.078	1.000	2.204	1.401
Calculate		50-Year	0.252	0.077	0.077	0.093	1.000	2.407	1.478
		100-Year	0.290	0.083	0.083	0.106	1.000	2.570	1.533
		Manual							

PROJECT	16728 Highway 12, Midland	FILE	32481	.6		
	U-Haul Development	DATE	23-Au	ıg-202	4	
SUBJECT	Secondary Overflow Weir Flow -	NAME	JH			
	East	PAGE	1	OF	1	
						-

Overflow Weir Parameters

Overflow Weir Base Elevation (m): 217.11 Overflow Weir Width, B (m): 8.5 Weir Crest Length, L (m): 1.8 Overflow Weir Material: Brickwork € (mm): 3.7 δ/L: 0.01007

	Left Flank	Right Flank
Grade (%):	33.0%	33.0%
Width (m):	0.5	0.5

 $\frac{\delta}{L}\approx 0.001+0.2\times (^{C}/_{L})^{0.5}$ Source: Equation 10.57 for round-nosed broadcrested weirs Frank M. White, Fluid Mechanics Fifth Edition , McGraw-Hill Companies Inc., New York, 2003.

100 Year Storm Ponding Depth and Overflow Elevation

1:100-Year Uncontrolled Flow (L/s):	899.30
Overflow Weir Base Elevation (m):	217.11
Structure T/G Elevation (m):	216.86

Required Weir Head (m):	0.171
C _d :	0.46
Qweir, (L/s):	899.30

Max Ponding Over T/G (m):	0.421
Weir Overflow Elevation (m):	217.28

Detailed Weir Flow Table

Elevation	h _{weir}	Weir C _d	Q _{Weir}
(m)	(m)		(L/s)
217.11	0.00		0.00
217.12	0.01		0.00
217.13	0.02	0.02	2.66
217.14	0.03	0.14	21.47
217.15	0.04	0.22	51.06
217.16	0.05	0.28	88.30
217.17	0.06	0.32	131.83
217.18	0.07	0.35	180.86
217.19	0.08	0.37	234.81
217.20	0.09	0.39	293.28
217.21	0.10	0.40	355.93
217.23	0.12	0.43	492.80
217.25	0.14	0.44	643.76
217.27	0.16	0.45	807.62
217.29	0.18	0.46	983.42
217.31	0.20	0.47	1170.40

 $C_d \approx 0.544 \times (1 - \frac{\delta/L}{H/L})^{3/2}$ $Q_{Weir} = C_d B g^{0.5} H^{3/2}$

Note: for flow over flanks, H in $\mathsf{Q}_{\mathsf{weir}}$ formula is "Required Weir Head" divided by 2.

PROJECT	^{DJECT} 16728 Highway 12, Midland U-Haul Development	FILE	32481	.6	
		DATE	18-Se	p-2024	1
SUBJECT	Secondary Overflow Channel - Pond Inlet	NAME	JH		
		PAGE	1	OF	1

	Region/Municipality							
	Midland							
		T _C (in minutes))					
		10						
Event	^	R	C	Intensity				
Event	A	D	C	(mm/hr)				
1-Year								
2-Year	807.44	6.75	0.828	78.28				
5-Year	1135.4	7.5	0.841	102.27				
10-Year	1387	7.97	0.852	118.36				
25-Year	1676.2	8.3	0.858	138.40				
50-Year	1973.1	9	0.868	153.18				
100-Year	2193.1	9.04	0.871	168.45				

	Peak Runoff Flow Rate									
Area Name	EXT-1	EXT-2	201	202						
Area (ha)	0.03	0.04	1.37	0.61						
Runoff	0.76	0.60	0.76	0.77						
Event	Q ₁	Q ₂	Q ₃	Q_4	Q ₅	Q ₆	Q _{Total}			
1-Year										
2-Year	4.60	4.92	224.10	100.71			334.32			
5-Year	6.01	6.42	292.80	131.58			436.81			
10-Year	6.95	7.43	338.85	152.28			505.52			
25-Year	8.94	9.56	435.86	195.87			650.24			
50-Year	10.79	11.55	526.24	236.49			785.07			
100-Year	12.37	13.23	602.82	270.90			899.32			

	Ditch Flows								
Manning's n:	0.035	Event	Q	depth	A _{Base}	A _{Sides}	P _{Base}	P _{Sides}	V
Ditch Slope:	0.60%	Event	(m ³ /s)	(m)	(m ²)	(m ²)	(m)	(m)	(m/s)
L. Side Slope 1:	3	1-Year							
R. Side Slope 1:	3	2-Year	0.334	0.161	0.483	0.078	3.000	1.019	0.596
Base Width (m):	3	5-Year	0.437	0.188	0.564	0.106	3.000	1.189	0.652
		10-Year	0.506	0.204	0.613	0.125	3.000	1.293	0.685
		25-Year	0.650	0.236	0.708	0.167	3.000	1.492	0.743
Calculate		50-Year	0.785	0.262	0.787	0.207	3.000	1.660	0.790
		100-Year	0.899	0.283	0.850	0.241	3.000	1.791	0.825
		Manual							
		manual							

Appendix D: Stage Storage Discharge Calculations

PROJECT 16728 Highway 12, Midland U-Haul Development	16728 Highway 12, Midland	FILE	32481	_6	
	U-Haul Development	DATE	17-Se	p-2024	1
SUBJECT	Orifice Flow	NAME	JH		
	Office Flow		1	OF	7

Orifice Parameters

Orifice Dia. (mm):	160
Orifice Centroid Elevation (m):	215.38
Orifice Invert Elevation (m):	215.30
Orifice Area (m ²):	0.02011
Orifice Coefficient (C):	0.63

$Q_{Orifice} = CA(2gh)^{0.5}$
Weir $C_d = 0.555 + \frac{1}{110 \times (\frac{h}{d})} + 0.041 \times (\frac{h}{d})$
$Q_{Weir} = C_d \times [10.12 \times \left(\frac{h}{d}\right)^{1.975} - 2.66 \times \left(\frac{h}{d}\right)^{3.78}] \times d^{\frac{5}{2}}$

Note: h and d in units of decimeters in the weir equations above.

Elevation	h _{invert}	h _{centroid}	Weir C _d	Q _{Weir}	Q _{orifice}	Q _{Governing}
(m)	(dm)	(m)		(L/s)	(L/s)	(L/s)
215.30	0.00	0.00				0.00
215.35	0.50	0.00	0.60	1.90		1.90
215.38	0.80	0.00	0.59	4.58	0.00	4.58
215.41	1.10	0.03	0.60	8.08	9.72	8.08
215.46	1.60	0.08	0.61	14.62	15.87	15.87
215.51	2.10	0.13	0.62	19.70	20.23	20.23
215.56	2.60	0.18	0.63	19.77	23.80	23.80
215.66	3.60	0.28	0.65	0.00	29.69	29.69
215.76	4.60	0.38	0.68	0.00	34.59	34.59
215.86	5.60	0.48	0.70	0.00	38.87	38.87
215.96	6.60	0.58	0.73	0.00	42.73	42.73
216.06	7.60	0.68	0.75	0.00	46.27	46.27
216.16	8.60	0.78	0.78	0.00	49.55	49.55
216.26	9.60	0.88	0.80	0.00	52.63	52.63
216.36	10.60	0.98	0.83	0.00	55.54	55.54
216.41	11.10	1.03	0.84	0.00	56.94	56.94
216.51	12.10	1.13	0.87	0.00	59.64	59.64
216.61	13.10	1.23	0.89	0.00	62.23	62.23
216.66	13.60	1.28	0.90	0.00	63.48	63.48
216.71	14.10	1.33	0.92	0.00	64.71	64.71
216.75	14.50	1.37	0.93	0.00	65.67	65.67
216.80	15.00	1.42	0.94	0.00	66.86	66.86
216.85	15.50	1.47	0.95	0.00	68.03	68.03
216.90	16.00	1.52	0.97	0.00	69.17	69.17
216.95	16.50	1.57	0.98	0.00	70.30	70.30
217.00	17.00	1.62	0.99	0.00	71.41	71.41
217.05	17.50	1.67	1.00	0.00	72.51	72.51
217.10	18.00	1.72	1.02	0.00	73.58	73.58
217.13	18.30	1.75	1.02	0.00	74.22	74.22

DRY POND

INFIL. CELL

Description

PROJECT	16728 Highway 12, Midland	FILE
	U-Haul Development	DATE
SUBJECT		NAM

 FILE
 324816

 DATE
 17-Sep-2024

 NAME
 JH

 PAGE
 2
 OF
 7

Dry Pond Quantity Storage

Base Elev. (m)	215.30	216.50				
Area (m ²)	442.88	342.50				
Pond Elev. (m)	217.10	217.10				
Pond Area (m ²)	980.67	632.60				
Pond Vol (m ³)	1281.19	292.53	0.00	0.00	0.00	
Elevation	Area	Area	Area	Area	Area	Total Vol.
(m)	(m²)	(m²)	(m²)	(m²)	(m²)	(m ³)
215.30	442.88	0.00	0.00	0.00	0.00	0.00
215.35	457.82	0.00	0.00	0.00	0.00	22.52
215.38	466.78	0.00	0.00	0.00	0.00	36.39
215.41	475.74	0.00	0.00	0.00	0.00	50.52
215.46	490.68	0.00	0.00	0.00	0.00	74.69
215.51	505.62	0.00	0.00	0.00	0.00	99.59
215.56	520.56	0.00	0.00	0.00	0.00	125.25
215.66	550.44	0.00	0.00	0.00	0.00	178.80
215.76	580.32	0.00	0.00	0.00	0.00	235.33
215.86	610.19	0.00	0.00	0.00	0.00	294.86
215.96	640.07	0.00	0.00	0.00	0.00	357.37
216.06	669.95	0.00	0.00	0.00	0.00	422.87
216.16	699.82	0.00	0.00	0.00	0.00	491.36
216.26	729.70	0.00	0.00	0.00	0.00	562.84
216.36	759.58	0.00	0.00	0.00	0.00	637.30
216.41	774.52	0.00	0.00	0.00	0.00	675.66
216.51	804.39	347.33	0.00	0.00	0.00	771.97
216.61	834.27	395.68	0.00	0.00	0.00	891.05
216.66	849.21	419.86	0.00	0.00	0.00	953.53
216.71	864.15	444.04	0.00	0.00	0.00	1017.96
216.75	876.10	463.38	0.00	0.00	0.00	1070.91
216.80	891.04	487.55	0.00	0.00	0.00	1138.86
216.85	905.98	511.73	0.00	0.00	0.00	1208.77
216.90	920.92	535.90	0.00	0.00	0.00	1280.63
216.95	935.85	560.08	0.00	0.00	0.00	1354.45
217.00	950.79	584.25	0.00	0.00	0.00	1430.23
217.05	965.73	608.43	0.00	0.00	0.00	1507.96
217.10	980.67	632.60	0.00	0.00	0.00	1587.64
217.13	980.67	632.60	0.00	0.00	0.00	1587.64

PROJECT	16728 Highway 12, Midland	FILE	32481	L6	
	U-Haul Development	DATE	17-Sep-2024		
SUBJECT	Total Storage Summary	NAME	JH		
		PAGE	3	OF	7

Elevation	MH & CB	Pipe	Ditch	Dry Pond	Underground	Total Vol.
(m)	(m ³)	(m³)	(m³)	(m ³)	(m ³)	(m ³)
215.30	0.00	0.00	0.00	0.00	0.00	0.00
215.35	0.00	0.00	0.00	22.52	0.00	22.52
215.38	0.00	0.00	0.00	36.39	0.00	36.39
215.41	0.00	0.00	0.00	50.52	0.00	50.52
215.46	0.00	0.00	0.00	74.69	0.00	74.69
215.51	0.00	0.00	0.00	99.59	0.00	99.59
215.56	0.00	0.00	0.00	125.25	0.00	125.25
215.66	0.00	0.00	0.00	178.80	0.00	178.80
215.76	0.00	0.00	0.00	235.33	0.00	235.33
215.86	0.00	0.00	0.00	294.86	0.00	294.86
215.96	0.00	0.00	0.00	357.37	0.00	357.37
216.06	0.00	0.00	0.00	422.87	0.00	422.87
216.16	0.00	0.00	0.00	491.36	0.00	491.36
216.26	0.00	0.00	0.00	562.84	0.00	562.84
216.36	0.00	0.00	0.00	637.30	0.00	637.30
216.41	0.00	0.00	0.00	675.66	0.00	675.66
216.51	0.00	0.00	0.00	771.97	0.00	771.97
216.61	0.00	0.00	0.00	891.05	0.00	891.05
216.66	0.00	0.00	0.00	953.53	0.00	953.53
216.71	0.00	0.00	0.00	1017.96	0.00	1017.96
216.75	0.00	0.00	0.00	1070.91	0.00	1070.91
216.80	0.00	0.00	0.00	1138.86	0.00	1138.86
216.85	0.00	0.00	0.00	1208.77	0.00	1208.77
216.90	0.00	0.00	0.00	1280.63	0.00	1280.63
216.95	0.00	0.00	0.00	1354.45	0.00	1354.45
217.00	0.00	0.00	0.00	1430.23	0.00	1430.23
217.05	0.00	0.00	0.00	1507.96	0.00	1507.96
217.10	0.00	0.00	0.00	1587.64	0.00	1587.64
217.13	0.00	0.00	0.00	1587.64	0.00	1587.64

PROJECT	16728 Highway 12, Midland	FILE	3
	U-Haul Development	DATE	1
SUBJECT	Overflow Weir Flow	NAME	JI
		DAGE	

FILE	32481	.6	
DATE	17-Se	p-2024	1
NAME	JH		
PAGE	4	OF	7

Overflow Weir Parameters

Overflow Weir Base Elevation (m):	216.80
Overflow Weir Width, B (m):	15.0
Weir Crest Length, L (m):	2.4
Overflow Weir Material:	Brickwork
€ (mm):	3.7

$$C_d \approx 0.544 \times (1 - \frac{\delta/L}{H/L})^{3/2}$$

$$^{\delta}/_{L}\approx0.001+0.2\times(^{\leftarrow}/_{L})^{0.5}$$

$$Q_{Weir} = C_d B g^{0.5} H^{3/2}$$

Source: Equation 10.57 for round-nosed broadcrested weirs Frank M. White, Fluid Mechanics Fifth Edition,

McGraw-Hill Companies Inc., New York, 2003.

Elevation	h _{weir}	Weir C _d	Q _{Weir}
(m)	(m)		(L/s)
215.30	0.00		0.00
215.35	0.00		0.00
215.38	0.00		0.00
215.41	0.00		0.00
215.46	0.00		0.00
215.51	0.00		0.00
215.56	0.00		0.00
215.66	0.00		0.00
215.76	0.00		0.00
215.86	0.00		0.00
215.96	0.00		0.00
216.06	0.00		0.00
216.16	0.00		0.00
216.26	0.00		0.00
216.36	0.00		0.00
216.41	0.00		0.00
216.51	0.00		0.00
216.61	0.00		0.00
216.66	0.00		0.00
216.71	0.00		0.00
216.75	0.00		0.00
216.80	0.00		0.00
216.85	0.05	0.24	124.65
216.90	0.10	0.38	564.92
216.95	0.15	0.43	1180.85
217.00	0.20	0.46	1931.66
217.05	0.25	0.48	2796.37
217.10	0.30	0.49	3761.58
217.13	0.33	0.49	4384.86

PROJECT 16728 Hi	16728 Highway 12, Midland	FILE	32481	L6	
	U-Haul Development		17-Se	p-202	4
SUBJECT Overflow Weir Flow	NAME	JH			
		PAGE	5	OF	7

100 Year Storm Ponding Depth and Overflow Elevation

1:100-Year Uncontrolled Flow (L/s):	899.3
Overflow Weir Base Elevation (m):	216.80
Structure T/G Elevation (m):	215.30
Required Weir Head (m):	0.129
C _d :	0.41
Qweir, (L/s):	899.3
Max Ponding Over T/G (m):	1.629
Weir Overflow Elevation (m):	216.93

Detailed Weir Flow Table

Elevation	h _{weir}	Weir C _d	Q _{Weir}
(m)	(m)		(L/s)
216.80	0.00		0.00
216.82	0.02		0.00
216.84	0.04	0.17	65.67
216.86	0.06	0.28	195.03
216.88	0.08	0.34	364.04
216.90	0.10	0.38	564.92
216.92	0.12	0.41	793.22
216.94	0.14	0.43	1046.00
216.96	0.16	0.44	1321.06
216.98	0.18	0.45	1616.73
217.00	0.20	0.46	1931.66
217.02	0.22	0.47	2264.74
217.04	0.24	0.47	2615.03
217.06	0.26	0.48	2981.72
217.08	0.28	0.48	3364.11
217.10	0.30	0.49	3761.58

PROJECT	16728 Highway 12, Midland	FILE	32481	L6	
U-Haul Development		DATE	17-Se	p-2024	1
SUBJECT	Stage Storage Discharge	NAME	JH		
		PAGE	6	OF	7

Stage Storage Discharge Table

Elevation	Q _{orifice} Prim.	Q _{Weir}	Q _{Total}	Total Vol.
(m)	(L/s)	(L/s)	(L/s)	(m ³)
215.30	0.00	0.00	0.00	0.00
215.35	1.90	0.00	1.90	22.52
215.38	4.58	0.00	4.58	36.39
215.41	8.08	0.00	8.08	50.52
215.46	15.87	0.00	15.87	74.69
215.51	20.23	0.00	20.23	99.59
215.56	23.80	0.00	23.80	125.25
215.66	29.69	0.00	29.69	178.80
215.76	34.59	0.00	34.59	235.33
215.86	38.87	0.00	38.87	294.86
215.96	42.73	0.00	42.73	357.37
216.06	46.27	0.00	46.27	422.87
216.16	49.55	0.00	49.55	491.36
216.26	52.63	0.00	52.63	562.84
216.36	55.54	0.00	55.54	637.30
216.41	56.94	0.00	56.94	675.66
216.51	59.64	0.00	59.64	771.97
216.61	62.23	0.00	62.23	891.05
216.66	63.48	0.00	63.48	953.53
216.71	64.71	0.00	64.71	1017.96
216.75	65.67	0.00	65.67	1070.91
216.80	66.86	0.00	66.86	1138.86
216.85	68.03	124.65	192.68	1208.77
216.90	69.17	564.92	634.09	1280.63
216.95	70.30	1180.85	1251.16	1354.45
217.00	71.41	1931.66	2003.07	1430.23
217.05	72.51	2796.37	2868.88	1507.96
217.10	73.58	3761.58	3835.16	1587.64
217.13	74.22	4384.86	4459.09	1587.64

PROJECT 1	16728 Highway 12, Midland	FILE	32481	.6	
U-Haul Development		DATE	17-Se	p-2024	1
SUBJECT	Stago Storago Dischargo	NAME	JH		
	Stage Storage Discharge	PAGE	7	OF	7

Discharge Summary - Modified Rational Method

Charme Friend	Control Flow	Storage	Depth	Elevation
Storm Event	(L/s)	(m ³)	(m)	(m)
1:2-year	39.5	305	0.58	215.88
1:5-year	46.0	418	0.75	216.05
1:10-year	49.7	495	0.86	216.16
1:25-year	56.5	662	1.09	216.39
1:50-year	61.0	834	1.26	216.56
1:100-year	63.9	974	1.38	216.68

Appendix E: Water Quality Controls

PROJECT	ROJECT 16728 Highway 12, Midland	FILE	32481	16	
	U-Haul Development		18-Se	ep-202	4
SUBJECT		NAME	JH		
	minitiation mench volume (202)	PAGE	1	OF	2

Texture Class:	Sand	dv Loam	Ontario AG Maps and Geotechnical Reports
Hydraulic Conductivity (cm/br):	2 18	- (Table 10	A - NVCA SWM Technical Guide)
Tyuraule conductivity, (cm/m).	2.10		
Percolation Time, (min/cm):	9.76	- (Interpola	ated per Table 7.1 - NVCA SWM Technical Guide)
Infiltration Rate, (mm/hr):	61.48	- (Table 7.	1 - NVCA SWM Technical Guide)
Ratio of Mean Measured Infiltration:	1.1 to 4.0) -	Estimate - Table 7.2 - NVCA SWM Technical Guide)
Safety Factor:	3.5	- Estimate	- Table 7.2 - NVCA SWM Technical Guide)
Revised Infiltration Rate, (mm/hr):	17.57	>= 15 mm/	/hr - Underdrain Not Required.
Required Storage Volume - MECP Qualit	y Control		
Design Area, (ha):	0.65		
Imperviousness, (%):	77%		
MECP Protection Level	Enhanced	d. 80% TSS	Removal
Storage Volume (m^3/h_2) :	37.4	4,00%1001	
Storage Volume (m^3):	24.31		
Required Storage Volume - 25 mm Storr	n Runoff f	from Imper	vious Surfaces
Impervious Surface Area (ha):	0.50		
Storage Volume (m³):	125.00		
Infiltration Footprint for Minimum 48-ho	ur Drawd	own Time	
i (mm/hr):	17.57	- Infiltratio	n Rate of Native Soil
i (m/hr):	0.018	- Infiltratio	n Rate of Native Soil
T _{D25mm} , (hr):	48.00	- Desired [Drawdown Time
V _{25mm} , (m ³):	125.00	- Volume t	o be infiltrated
Q_i (m ³ /hr) = V _{25mm} /T _{D25mm} =	2.60	- Required	Infiltration Rate for Desired Drawdown
$A_f(m^2) = Q_i/i =$	148.22	- Footprint	t of Infiltration Basin
Void Ratio, (%):	40%	- Void Rati	io of Infiltration Gallery
D, (m):	2.11	- Required	Depth of Infiltration Gallery

PROJECT	16728 Highway 12, Midland		32481	L6	
	U-Haul Development	DATE	18-Se	p-202	4
SUBJECT		NAME	JH		
		PAGE	2	OF	2

Proposed Infiltration Trenches

Infiltration Trench

Width of Infiltration Trench, (m):	2.50
Length Iniltration Trench, (m):	60.00
Infiltration Trench Footprint, (m ²):	150.00
Elevation of Weir Discharge, (m):	219.68
Invert Elevation at Low Point, (m):	219.46
Slope of Banks, (%):	33.33%
Surface Storage Volume, (m ³):	42.17
Depth of Topsoil and Sod, (m):	0.15
Depth of Permeable Backfill, (mm):	0.00
Depth of Clear Stone Layer, (m):	1.45
Depth of Sand Layer, (m):	0.50
Combined Underground Depth, (m):	2.10
Void Ratio, (%):	40%
Storage Volume, (m ³):	126.00
Trench Base Elevation, (m):	217.36

Combined Storage

Max. Storage Required, (m ³):	125.00
Combined Storage Provided, (m ³):	168.17

Therefore, the proposed trenches have sufficient capacity for the design storage.

PROJECT 16728	16728 Highway 12, Midland	FILE	32481	L6	
U-Haul Development		DATE	18-Se	ep-202	4
SUBJECT		NAME	JH		
		PAGE	1	OF	2

Texture Class	Sanc	ly Loam	Ontario AG Mans and Geotechnical Reports
Ludraulia Canduativity (am/hr)	2 1 9	(Table 10	
Hydraulic Conductivity, (cm/nr):	2.10	- (таріе то	4 - NVCA SWM Technical Guide)
Percolation Time, (min/cm):	9.76	- (Interpola	ited per Table 7.1 - NVCA SWM Technical Guide)
Infiltration Rate, (mm/hr):	61.48	- (Table 7.1	L - NVCA SWM Technical Guide)
Ratio of Mean Measured Infiltration:	1.1 to 4.0) –	Estimate - Table 7.2 - NVCA SWM Technical Guide)
Safety Factor:	3.5	- Estimate	- Table 7.2 - NVCA SWM Technical Guide)
Revised Infiltration Rate, (mm/hr):	17.57	>= 15 mm/	hr - Underdrain Not Required.
Required Storage Volume - MECP Qualit	y Control		
Design Area, (ha):	1.40		
Imperviousness, (%):	74%		
MECP Protection Level:	Enhanced	d, 80% TSS F	Removal
Storage Volume, (m ³ /ha):	36.4		
Storage Volume, (m ³):	50.96		
Impervious Surface Area (ba)	1 04	rom mper	vious surraces
Storage Volume (m^3) :	259.00		
Storage Volume (m).	200100		
nfiltration Footprint for Minimum 48-ho	ur Drawd	own Time	
i (mm/hr):	17.57	- Infiltratio	n Rate of Native Soil
i (m/hr):	0.018	- Infiltratio	n Rate of Native Soil
T _{D25mm} , (hr):	48.00	- Desired D	prawdown Time
V _{25mm} , (m ³):	259.00	- Volume t	b be infiltrated
$Q_i (m^3/hr) = V_{25mm}/T_{D25mm} =$	5.40	- Required	Infiltration Rate for Desired Drawdown
$A_{f}(m^{2}) = Q_{i}/i =$	307.10	- Footprint	of Infiltration Basin
Void Ratio, (%):	40%	- Void Rati	o of Infiltration Gallery
D, (m):	2.11	- Required	Depth of Infiltration Gallery

PROJECT	16728 Highway 12, Midland	FILE	32481	16	
	U-Haul Development	DATE	18-Se	ep-2024	4
SUBJECT	Infiltration Tranch Volume (201)	NAME	JH		
		PAGE	2	OF	2

Proposed Infiltration Trenches

Infiltration Trench

Width of Infiltration Trench, (m):	6.10
Length Iniltration Trench, (m):	51.10
Infiltration Trench Footprint, (m ²):	311.71
Elevation of Weir Discharge, (m):	216.50
Invert Elevation at Low Point, (m):	216.50
Slope of Banks, (%):	33.33%
Surface Storage Volume, (m ³):	0.00
Depth of Topsoil and Sod, (m):	0.15
Depth of Permeable Backfill, (mm):	0.00
Depth of Clear Stone Layer, (m):	1.45
Depth of Sand Layer, (m):	0.50
Combined Underground Depth, (m):	2.10
Void Ratio, (%):	40%
Storage Volume, (m ³):	261.84
Trench Base Elevation, (m):	214.40

Combined Storage

Max. Storage Required, (m ³):	259.00
Combined Storage Provided, (m ³):	261.84

Therefore, the proposed trenches have sufficient capacity for the design storage.

PROJECT	16728 Highway 12, Midland	FILE	324816
	U-Haul Development	DATE	18-Sep-20
SUBJECT		NAME	INI

 Water Quality Treatment Train
 Name

 Catchments with Paved Areas
 PAGE
 1

 FILE
 324816

 DATE
 18-Sep-2024

 NAME
 JN

 PAGE
 1
 OF
 1

Water Quality Treatment Train Calculation

Catchment Label: 201, 203, EXT-1 & EXT-3

Total Drainage Area, (ha): 1.63

Catchment Imperviousness, (%):

66.9% (weighted average)

Treatment Control		Target TSS Removal	Actual Area (ha)	Actual TSS Removal
Pre-Treatment	Grass Swales	36.0%	1.63	36.0%
Primary Treatment	Infiltration Trench	80.0%	1.40	68.7%
				0.0%

TSS Removal = 1 - ((1 - R_1) x (1 - R_2) x (1 - R_3))

Where:

 $\mathsf{R}_1\!\!:$ % TSS Removal by Pre-Treatment

R2: % TSS Removal by Primary Treatment

R₃: % TSS Removal by Optional Treatment

TSS Removal (Primary Controls) =	80.0%
----------------------------------	-------

TSS Removal (Incl. Secondary Controls): 80.0%

Notes:

TSS = Total Suspended Solids.

Appendix F: Water Budget Calculations

Water Budget Climate Normal Data

Project D	Details				Prepar	ed By			
16728 Hig	hway 12, M	1idland		324816	JH			18	-Sep-2024
Water Budget Details									
Methodolog	У		Thornthwa	aite Methoo	d				
Climate Dat	a & Source		Midland W	/PCP					
			Climate N	ormal Data	for 1997 to	2016 (Enviro	onment Ca	nada)	
Thornthwait	e Coefficient		1.095						
Month	Temp (°C)	Precip (mm)	Heat Index	PET (mm)	Daylight Factor	Adjusted PET (mm)	AET (mm)	Surplus (mm)	Deficit (mm)
Jan.	-8.5	109.8	0.0	0.0	0.77	0.0	0.0	109.8	0.0
Feb.	-6.4	69.9	0.0	0.0	0.87	0.0	0.0	69.9	0.0
Mar.	-1.9	65.7	0.0	0.0	1.00	0.0	0.0	65.7	0.0
Apr.	5.8	65.1	1.3	28.8	1.12	32.4	32.4	32.7	0.0
May	12.2	92.8	3.9	73.7	1.23	90.9	90.9	1.9	0.0
Jun.	18.1	89.5	7.0	114.9	1.29	148.2	89.5	0.0	58.7
Jul.	20.8	72.7	8.7	135.3	1.26	170.7	72.7	0.0	98.0
Aug.	19.9	77.9	8.1	119.1	1.17	138.8	77.9	0.0	60.9
Sep.	15.9	99.1	5.8	80.6	1.04	84.1	84.1	15.0	0.0
Oct.	9.3	90.1	2.6	40.7	0.92	37.2	37.2	52.9	0.0
Nov.	3.2	103.6	0.5	10.7	0.80	8.6	8.6	95.0	0.0
Dec.	-3.1	104.4	0.0	0.0	0.74	0.0	0.0	104.4	0.0
Total	-	1041	37.7	603.8	-	710.9	493.3	547.3	217.7

Additional Notes

PET = Potential Evapotranspiration; AET = Actual Evapotranspiration

Equations

$$PET = 16 \left(rac{L}{12}
ight) \left(rac{N}{30}
ight) \left(rac{10T_d}{I}
ight)^lpha$$
 Where

PET is the estimated potential evapotranspiration (mm/month) % PET

 T_d is the average daily temperature (degrees Celsius; if this is negative, use 0) of the month being calculated

N is the number of days in the month being calculated

L is the average day length (hours) of the month being calculated

 $lpha = (6.75 imes 10^{-7}) I^3 - (7.71 imes 10^{-5}) I^2 + (1.792 imes 10^{-2}) I + 0.49239$

 $I = \sum_{i=1}^{12} \left(\frac{T_{m_i}}{5}\right)^{1.514}$ is a heat index which depends on the 12 monthly mean temperatures T_{m_i} .^[1]

Water Budget Pre and Post Development Comparison

Project Details16728 Highway 12, Midland324816

Pre-Development Catchment Details					
Area (ha)	2.45				
Pervious Area (ha)	2.37				

0.08

Prepared By

JH

Sep-24

Post Development Catchment Details					
Area (ha)	2.45				
Pervious Area (ha)	0.84				
Impervious Area (ha)	1.61				

Infiltration Factor

Impervious Area (ha)

	Pre-Dev	elopment	Post Deve	elopment
Infiltration Factor	Pervious	Impervious	Pervious	Impervious
Topography	0.100	0.0	0.100	0.0
Soil	0.300	0.0	0.300	0.0
Land Cover	0.200	0.0	0.100	0.0
Infiltration Factor	0.600	0.0	0.500	0.0

Water Budget

Water Budget	Pervious	Impervious	Total	Pervious	Impervious	Total
Water Surplus (m ³)	12,972	438	13,409	4,598	8,812	13,409
Infiltration (m ³)	7,783	0	7,783	2,299	0	2,299
Runoff (m ³)	5,189	438	5,626	2,299	8,812	11,111
Reduction in Infiltration Volume (m ³)						5,484

Additional Notes

Infiltration Factors

Topography	Flat Land, average slope < 0.6 m/km	0.3
	Rolling Land, average slope 2.8 m to 3.8 m/km	0.2
	Hilly Land, average slope 28 m to 47 m/km	0.1
Soils	Tight impervious clay	0.1
	Medium combinations of clay and loam	0.2
	Open Sandy loam	0.4
Cover	Cultivated Land	0.1
	Woodland	0.2

(Stormwater Planning and Design Manual. MOE, 2003.)

Water Budget

Mitigation Measures

LID Design

Project Details	Prepared By	
16728 Highway 12, Midland 3248	JH	Sep-24
LID Design Details		·
LID Measure	Infilt	ration Trench
LID Impervious Drainage Area (ha)		1.54
Number of LIDs		1
Void Ratio		0.4
Footprint of LID (m ²)		461.70
Depth of LID (m)		2.10
Storage Volume Required (m ³)		113.8
Volume Required / LID (m ³)		113.79
Volume Provided / LID (m ³)		387.83
Volume Provided (m ³)		387.83
Design Precipitation Depth (mm)		25.2
Annual Volume Captured (mm)		676.5
Annual Volume Captured excluding Evapotransir	ation (m ³)	10,419
Annual Volume Captured after Evapotranspiratio	n (m ³)	8,335

Additional Notes

Water Budget Summary

Project Details	Prepared By				
16728 Highway 12, Midland	324816	JH		Sep-24	
Summary					
Existing Infiltration (m ³)			7,7	83	
Proposed Infiltration (m ³) - No Mitigta	ation		2,2	99	
Infiltration Deficit Prior to Mitigation ((m ³)		-5,4	.84	
Proposed Infiltration Measures Increase Topsoil Depth X Infiltration LID Impervious Area Routed Over Pervious Area					
Mitigation - Increase Topsoil Reduction in Pervious Runoff (m ³) 0					
Mitigation Measure - Implementing LID (m ³) 8,33					
Mitigation Measure - Impervious Area Routed over Pervious Area (m ³) 0					
Infiltration Surplus after Mitigation (m	1 ³)		2,8	51	

Additional Notes

Appendix G: Design Drawings

ENGINEER WITHOUT THE EXPRESS CONSENT OF

Drawing Name: 324816-DET-1.dwg, Plotted: Sep 25, 2024

TATHAM ENGINEERING LIMITED.

REVISION DESCRIPTION	DATE	ENGINEER STAMP	OFESSION	16728 HIGHW
1ST SUBMISSION	AUG. 2024		2 Photo way 62	
			JA NEMISZ	TOWN OF MI
			100181826	
			30 324816 810	NOTES AND [
		1	WCE OF ON T	
			J. A. NEMISZ 100181826 Sept. 25, 2024 324816 NUNCE OF ONTRE	NOTES A

DETAILS DRAWN: JH DATE: AUG. 2024 CHECK: JN SCALE: 1:500

Drawing Name: 324816—LG01.dwg, Plotted: Sep 25, 2024

KEY PLAN

LEGEND

PROPOSED GROUND ELEVATION EXISTING GROUND ELEVATION *○ STM MH* FUTURE STORM MH FUTURE STORM CB PROPOSED OVERLAND FLOW DIRECTION PROPOSED MH C/W OGS UNIT PROPOSED WATER VALVE PROPOSED HYDRANT & VALVE EXISTING HYDRANT PROPOSED CULVERT POTENTIAL ROOF DRAIN FIRE DEPARTMENT CONNECTION

6 H S 6 **NIX**

IAY 12 100 concession 1) IDLAND			A M R I N G
	DESIGN: JH	FILE: 324816	DWG:
IG PLAN	DRAWN: JH	DATE: AUG. 2024	LG.1
	CHECK: JN	SCALE: 1:500	

<u>LEGEND</u>

SILT/TREE PROTECTION FENCE OPSD 219.131 STRAW BALE FLOW CHECK DAM OPSD 219.180 PERMANENT ROCK CHECK DAM OPSD 219.211 STONE MUD MAT

CATCH BASIN FILTER

CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF

TATHAM ENGINEERING LIMITED.

Drawing Name: 324816-SC-1.dwg, Plotted: Sep 25, 2024

SILTATION AND EROSION CONTROL NOTES

- 1. ALL SILTATION AND EROSION CONTROL MEASURES TO BE IN PLACE PRIOR TO CONSTRUCTION.
- 2. CONTRACTOR TO INSTALL AND MAINTAIN SILTATION CONTROL DEVICES AT LOCATIONS SHOWN, OR AS DIRECTED BY THE CONTRACT ADMINISTRATOR IF ADDITIONAL CONTROLS ARE DEEMED NECESSARY.
- 3. CONTRACTOR TO ARRANGE PRE-CONSTRUCTION MEETING WITH CONTRACT ADMINISTRATOR IMMEDIATELY AFTER PLACING ALL SILTATION CONTROL DEVICES.
- 4. SILTATION CONTROL DEVICES TO BE INSPECTED BY CONTRACTOR WEEKLY AND AFTER EACH RAINFALL. REPAIRS TO SILTATION CONTROL DEVICES TO BE COMPLETED PROMPTLY WHEN REQUIRED.
- 5. THE CONTRACT ADMINISTRATOR WILL INSPECT THE SEDIMENT AND EROSION CONTROL MEASURES PERIODICALLY, AND AFTER EACH MAJOR STORM EVENT. THE CONTRACT ADMINISTRATOR WILL NOTIFY THE CONTRACTOR OF CORRECTIVE ACTIONS REQUIRED AS SOON AS DEFICIENCIES ARE NOTED. THE CONTRACTOR MAINTAINS ULTIMATE RESPONSIBILITY TO ENSURE PROPER SEDIMENT AND EROSION CONTROL MEASURES ARE IMPLEMENTED AND MAINTAINED. ALL DEFICIENCIES AND CORRECTIVE MEASURES WILL BE DOCUMENTED BY THE CONTRACTOR IN A WEEKLY INSPECTION REPORT. A COPY OF THE WEEKLY INSPECTION REPORT WILL BE PROVIDED TO THE CONTRACT ADMINISTRATOR.
- 6. CONTRACTOR TO REMOVE SILTATION CONTROL DEVICES ONLY AFTER ALL PAVING IS COMPLETED AND VEGETATION HAS STABILIZED.
- 7. ALL SILT FENCE PER OPSD 219.131 (SEE DETAIL ON THIS DRAWING) .

CONSTRUCTION ENTRANCE NOTES

- 1. CONSTRUCT AND MAINTAIN CONSTRUCTION ENTRANCE AS SHOWN AND IN ACCORDANCE WITH O.P.S.D. 301.020.
- 2. ALL CONSTRUCTION VEHICLES TO ACCESS THE SITE USING THE DESIGNATED CONSTRUCTION ENTRANCE.
- 3. CONTRACTOR TO INSTALL AND MAINTAIN STONE MUD MAT AS DETAILED.
- 4. REMOVE TOPSOIL (WHERE APPLICABLE) BEFORE INSTALLING CONSTRUCTION ENTRANCE.
- 5. PROMPTLY REMOVE ANY MUD OR DUST WHICH IS TRANSPORTED BEYOND THE STONE MUD MAT TO MAINTAIN EXISTING ROAD DRIVING CONDITION.
- 6. ENTRANCE RADII TO BE MINIMUM 8.0m.

AY 12 100 CONCESSION 1) DLAND			
	DESIGN: JH/MPO	FILE: 324816	DWG:
	DRAWN: JH/MPO	DATE: AUG. 2024	ESC-1
	CHECK: JN	SCALE: 1:750	

CONTROL

KEY PLAN

LEGEND

→ STM MH CB	PROPERTY LINE EXISTING DITCH EXISTING STORM SEWER EXISTING STORM MH EXISTING STORM CB
200ø SAN	PROPOSED SANITARY SEWER/ SIZE/ DIRECTION OF FLOW
4500 STM	PROPOSED STORM SEWER/ SIZE/ DIRECTION OF FLOW
50¢ WATERMAIN	WATERMAIN/SIZE
	PROPOSED SANITARY SERVICE
<u> </u>	PROPOSED WATER SERVICE
⊳ ·	PROPOSED DITCH
●SAN MH2	PROPOSED SANITARY MANHOLE/ NUMBER
● STM MH2	PROPOSED STORM MANHOLE/ NUMBER
✦HYD & wv	PROPOSED HYDRANT & WATER VALVE
► WV	PROPOSED WATER VALVE
►CSV	PROPOSED WATER CURB STOP
\$	POTENTIAL ROOF DRAIN
	ENTRANCE/EXIT – VEHICULAR
\triangleright	ENTRANCE/EXIT – PEDESTRIAN
+ HYD	EXISTING HYDRANT
	PROPOSED CULVERT
Ŷ	FIRE DEPARTMENT CONNECTION

VAY 12 F 100 CONCESSION 1) IDLAND			
	DESIGN: JH/WL	FILE: 324816	DWG:
ICING PLAN	DRAWN: JH/WL	DATE: AUG. 2024	GS.1
	CHECK: JN	SCALE: 1:500	