

Enhancing our communities

16728 Highway 12 FUNCTIONAL SERVICING REPORT

U-Haul Co. Canada Ltd.

File 324816 | September 25, 2024

Document Control

10 Diana Drive, Unit 7

T 705-444-2565

tathameng.com

Orillia, Ontario L3V 8K8

File: Prepared by:

324816

25, 2024

Date: September Tatham Engineering Limited U-Haul Co. Canada Ltd. 152 East Drive Brampton, Ontario L6T 1C1

Prepared for:

Authored by: Reviewed by: Stop PROFESSION AL FEFR A. NEMISZ 100181826 25 RIO INCE OF Joshua Nemisz, B.A.Sc., P.Eng. Jaco Hofstetter, B.Eng. Engineering Candidate Senior Engineer, Project Manager

Disclaimer	Copyright
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and Tatham Engineering Limited undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.	This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tatham Engineering Limited.

Issue	Date	Description
1	September 25, 2024	First Submission

i

Document Contents

1	Intr	roduction	1
1.1		Exisiting Site Conditions	1
1.2		Proposed Development	1
1.3		Background Information	2
2	Wa	ter Supply and Distribution	3
2.1		Existing Water System	3
2.2		Proposed Water System	3
2.3		Proposed Design Flows	4
2.4		Fire Protection	4
3	San	nitary System	6
3.1		Existing Sanitary System	6
3.2		Proposed Sanitary System	6
4	Ero	sion Control and Grading	7
5	Util	lities	8
6	Sun	nmary	9
6.1		Water Supply and Distribution	9
6.2		Sanitary Sewer Collection	9
6.3		Erosion Control and Grading	9
6.4		Utilities	9

Tables

Table 1: Fire Hydrant Flow Data	a Summary
---------------------------------	-----------

Figures

Figure 1: Key Plan – 16728 Highway 12	1	0
---------------------------------------	---	---

Appendices

Appendix A: Water Demand Calculations Appendix B: Sanitary Flow Calculations Appendix C: Design Drawing

1 Introduction

Tatham Engineering Limited (Tatham) has been retained by U-Haul Co. Canada Ltd. to prepare a Functional Servicing Report (FSR) in support of a proposed development located at 16728 Highway 12 in the Town of Midland. A preliminary Stormwater Management (SWM) Report, Traffic Impact Brief (TIB) and Hydrogeological Assessment (Hydro-G) Report have been prepared by Tatham and are submitted under separate cover.

1.1 EXISITING SITE CONDITIONS

The overall development site is approximately 2.35 hectares in size and is located at 16728 Highway 12 within the Town of Midland. The property is bound by Prospect Boulevard to the south, an existing commercial hotel to the east, Highway 12 to the north, and an existing commercial automotive dealership to the west.

The property is located in the Wye River watershed which is within the jurisdiction of the Severn Sound Environmental Association (SSEA). The site location is illustrated on Figure 1 enclosed at the rear of this report for reference.

1.2 PROPOSED DEVELOPMENT

The proposed development includes two buildings consisting of the following:

- Building 'A' a 3-storey, 3,348 m², mixed use building including self-storage, office and retail spaces; and
- Building 'B' a 1-storey, 1,186 m² logistics building with the interior configured as one large open space 3-storeys in height.

In addition to the self-storage building, the site also includes an external storage unit area configured as four distinct groupings of storage units separated by access laneways. These storage units will be configured to allow surface drainage to flow beneath them without affecting their contents.

Building 'A' will reside along the west side of the property near the northern property limit while Building 'B' will also reside on the west side of the parcel, approximately 10.0 m south of the selfstorage building. The external storage units will be located near the south-east corner of the property along with snow storage and a dry pond. The site plan also includes guest parking along the flanks of the buildings with truck share parking along the north and south lot limits, all of which will be accessed through a new site entrance to Prospect Boulevard. The existing site access to Highway 12 is to be removed.

1.3 BACKGROUND INFORMATION

The following design guidelines and manuals were referenced to prepare the servicing design for the site:

- Water supply for Public Fire Protection (Fire Underwriters Survey, 2020)
- Design Criteria for Sewage Works, Storm Sewers and Forcemains for Alterations Authorized under Environmental Compliance Approvals (MECP, 2022);
- Design Guidelines for Drinking-Water Systems (MECP, 2008);
- Fire Hydrants: Installation, Field Testing and Maintenance, 5th edition, AWWA;
- Engineering Development Design Standards (Town of Midland, 2024); and
- 2012 Building Code as amended (OBC).

2 Water Supply and Distribution

2.1 EXISTING WATER SYSTEM

The Town maintains an existing 300 mm diameter PVC watermain along Prospect Boulevard. The watermain is located within pressure zone 2.

Two hydrants are located along Prospect Boulevard, one located at the southwest corner of the development, and the other directly in front of the development. There is currently no flow data available for the hydrant directly in front of the development however, flow data from the testing completed at the intersection of Jones Road and Prospect Boulevard in 2018 is summarized in Table 1.

		STATIC	FLOW	FLOW RATE L/S (GPM)			
HYD. NO	LOCATION	PRESSURE KPA (PSI)	PRESSURE KPA (PSI)	MEASURED	ESTIMATED AT 20 PSI		
H30	Corner of Jones Rd. and Prospect Blvd.	297 (43)	214 (31)	58 (919)	82 (1306)		
H115	Central to frontage of property	N/A	N/A	N/A	N/A		

Table 1: Fire Hydrant Flow Data Summary

Available flows within the existing watermain under fire flow demands have been calculated as 82 L/s at a residual pressure of 138 kPa (20 psi). Calculations are available in Appendix A.

2.2 PROPOSED WATER SYSTEM

The proposed development will be serviced with a 200 mm diameter water service supplying water for both fire protection and domestic demand. The water service will connect directly to Building 'B' where a backflow prevention device and water meter will be installed. Plumbing for separate 25 mm diameter domestic and 150 mm diameter fire protection services will be provided internal to Building 'B'.

A separate 200 mm diameter watermain will extend from Building 'B' to service Building 'A' with 25 mm diameter domestic and 150 mm diameter fire protection services.

The new watermain will connect to the existing 300 mm diameter PVC watermain on Prospect Boulevard via live tap or by cutting in a new 300x300x200 mm tee. The 200 mm diameter pipe is proposed for servicing the site to minimize friction losses during firefighting demands, recognizing the low supply pressure in the municipal watermain. The watermain is also illustrated on drawing GS.1 found in Appendix C.

2.3 PROPOSED DESIGN FLOWS

Water demands for the site have been estimated by applying typical daily flows expressed in Table 8.2.1.3.B of the Ontario Building Code (OBC) which apply to this development. These flows are summarized below:

- 950 L/day per water closet;
- 150 L/day per loading bay door in a warehouse building;
- 5.0 L/day per square meter of floor space in a retail use.

A maximum daily demand peaking factor of 2.0 and peak hour demand peaking factor of 4.0 were considered in accordance with MECP guidelines. The calculated water demands are summarized below with supporting calculations in Appendix A:

- Average Daily Demand (ADD): 0.07 L/s;
- Maximum Daily Demand (MDD): 0.14 L/s; and
- Peak Hour Demand (PHD): 0.29 L/s.

Presuming the 297 kPa (43 psi) system pressure, as identified by the hydrant flow testing, is available at the property frontage pressure losses on the site have been calculated based on the peak hour demand. Presuming domestic supply is provided to the finished floor of the proposed buildings, pressures of 299 kPa and 290 kPa are anticipated for Building 'A' and Building 'B' respectively. Therefore, the proposed servicing will be sufficient for domestic demands on the ground floor however, internal pumps may be necessary to maintain minimum pressure of 276 kPa (40 psi) on the 2nd and third storey of the building. Supporting calculations are provided in Appendix A.

2.4 FIRE PROTECTION

The fire flow demands of the site were calculated using the Fire Underwriters Survey Fire Flow Calculations. Assuming fire resistive construction, with associated exposure charge reductions, and an automatic sprinkler protection system designed and installed in accordance with NFPA 13, the fire flow required for both Building 'A' and Building 'B' is 83 L/s. Since the available flows from the existing hydrant are 82 L/s and finished grade at the hydrant is approximately 3.0 m higher than the proposed point of connection, the water supply for firefighting is considered to be sufficient to meet the proposed demand.

A private fire hydrant is proposed between the two buildings for fire department connections and improved access to building entrances. The location of the hydrant also ensures a minimum separation of 45 m between the hydrant and the fire fighting connections proposed on the two buildings.

An alternative to fire resistive construction may include vertical fire walls rated for 2-hours to compartmentalize the buildings and reduce the fire protection demand. While this may allow non-combustible construction materials to be used while meeting demand requirements, it may be difficult to implement in Building 'B' while maintaining its intended internal configuration.

Fire protection calculations are included in Appendix A. Construction materials and details for fire protection may be modified during detailed design of the development.

3 Sanitary System

3.1 EXISTING SANITARY SYSTEM

Under existing conditions, sewage flows from Prospect Boulevard are conveyed across King Street towards Cranston Crescent. Prospect Boulevard is serviced with a 200 mm diameter sanitary sewer. Existing peak flows within Prospect Boulevard between MH 957 and MH 956 are unknown, however the conveyance capacity of the system at this location is approximately 63.6 L/s based on as-built drawings showing a 200 mm diameter sewer at 3.45% grade and preliminary Manning's flow capacity calculations.

3.2 PROPOSED SANITARY SYSTEM

A new 200 mm diameter communal sanitary sewer is proposed to service this site. Building 'B' will discharge to the sanitary sewer via a 150 mm diameter service lateral. Building 'A' will discharge to the sanitary sewer via two 150 mm diameter service laterals servicing each of the internal restroom areas directly. Connection to the existing Prospect Boulevard sewer is proposed via prefabricated saddle tee with a maintenance hole at the property line for access.

The calculated average daily flow from the development is 6,230 L/day (0.07 L/s). Applying a peaking factor of 4.0 and infiltration rate per the Midland Engineering Design Standards results in a peak sewage flow of 0.83 L/s. This represents approximately 3.6% of the capacity of the existing sanitary system located on Prospect Boulevard. Sanitary sewer calculations are provided in Appendix B while the proposed alignment is illustrated on drawing GS.1 in Appendix C.

4 Erosion Control and Grading

Siltation and erosion controls will be implemented for all construction activities, including removals, earthwork operations, service construction, building construction, paving and grading works. Details of the siltation and erosion controls are shown on the Erosion & Siltation Control Plan drawing (ESC-1). A number of standard practices which will be implemented are summarized as follows:

- The disturbance area and activities will be minimized where possible;
- The smallest possible land area will be exposed for the shortest amount of time;
- Heavy duty silt control fences will be erected coincident with the property boundary prior to commencement of grading operations to control sediment movement;
- A stone mud mat will be implemented at the construction entrance;
- Catch basins on-site and downstream of the site will have grates wrapped in permeable geotextile to prevent migration of sediment into the storm sewers;
- Straw bale check dams will be installed in existing ditches and drainage features downstream of anticipated disturbance;
- Regular inspection of control measures shall be instituted and repairs made as necessary; and
- Promptly re-vegetating disturbed areas following completion of construction works within the site.

5 Utilities

There are existing overhead and underground utilities within Prospect Boulevard right-of-way. Detailed design for servicing will be completed in conjunction with service providers during the detailed design process, including designing internal work and any external upgrades where they may be required once building design loads have been established.

6 Summary

6.1 WATER SUPPLY AND DISTRIBUTION

A new 200 mm diameter watermain will be extended into the property and Building 'B' for backflow prevention and metering and extended to Building 'A' for servicing. Building 'A' will be serviced with a 25 mm diameter domestic service lateral connected to the main while Building 'B' will be serviced with a 25 mm diameter service internally. Fire protection will be provided by the existing fire hydrant on the frontage of the property, a proposed private hydrant within the site, and 150 mm diameter fire protection services extended to Building 'A' and an internal 150 mm diameter fire protection service within Building 'B'.

6.2 SANITARY SEWER COLLECTION

The site will be serviced by a 200 mm diameter sanitary sewer and 150 mm diameter sanitary service laterals: a single lateral to the single-storey building, and two laterals to the three-storey warehouse. A maintenance hole will be provided at the property line to serve as maintenance access.

6.3 EROSION CONTROL AND GRADING

Erosion control devices will be installed around the perimeter of the site, inspected, and maintained regularly during construction. Proposed grading will match existing grades along the perimeter of the development.

6.4 UTILITIES

Utilities will be coordinated to service the development during the detailed design phase.

Appendix A: Water Demand Calculations

WATER FLOW TEST DATA

NAME OF 1	RISK: Prospec	t Area								
ADDRESS:	Prospect Drive	e					OPE	RATOR:		DATE: 26/11/2018
CITY: Midl	a∖nd			PROVIN	ICE: Ontario		71171			20/11/2010
SYSTEM D	ATA	SIZE OF MA	JN:	DEAD	end 🗆	TWO WA	ys X		LOOP	
SOURCE RELIABL										
TEST DATA	TEST LOCATION OF TE DATA				S: RESIDUAL:31psi FLOW:30 psi					
		STATIC PRI	ESSURE:	43 psi	TIME: 9:	30 am				
Test No.	No. OF OUTLETS	ORIFICE SIZE (in.)	PITOT READIN	G	EQUIVALENT FLOW gpm (U.S.)	TOTAL FI (U.S.)	LOW	RESIDUA PRESSUR	AL RE (psi)	COMMENTS
1	1	2.5	30		919	1306		31		
GREECH A										
		FI	lowing ydrant							Residual Hydrant

NOTE:

Pitot Pressure: The pressure reading obtained on the Pitot gauge during a flow test.

Residual Pressure: The pressure that exists in the distribution system, measured at the residual hydrant at the time the flow readings are taken at the flow hydrant.

Static Pressure: The pressure that exists at a given point under normal distribution-system flow conditions.

PROJECT	16729 HWV 12 Midland	FILE	3248	16	
		DATE	3/5/	2024	
SUBJECT	Available Fire Flow from Hydrant Test	NAME	MF	CHKD	
		PAGE	1	OF	1

DESIGN EQUATION

The following equation provided by the *AWWA M17 Fire Hydrants: Installation, Field Testing, and Maintenance* calculates the available fire flow at a desired residual pressure, given observed hydrant test results of static pressure, hydrant flow and residual pressure.

$$Q_r = Q_f \left(\frac{h_r}{h_f}\right)^{0.54}$$

Where:

 Q_r is the flow at a desired residual pressure (U.S. GPM)

 Q_f is the observed flow (U.S. GPM)

 h_r is the difference between the static pressure and the desired residual pressure (psi)

 h_f is the observed drop in pressure from static pressure to residual pressure (psi)

CALCULATION Enter values in the cells highlighted in blue

	Observed			Calcu	ılated		Target		
Hydrant Test Description	Static Pressure (psi)	Residual Pressure (psi)	Hydrant Flow (U.S. GPM) <i>Q_f</i>	h _r	h_f	Residual Pressure (psi)	Hydrani ((GPM)	t Flow) ₇ (L/s)	
H30 Corner of Jones Rd and Prospect Blvd	43	31	919	23	12	20	1,306	82	

PROJECT	16728 Highway 12	FILE	324816		
Building 'A'			Septemb	er 16,	2024
SUBJECT	Non-Residential Occupancies	NAME	JN		
	Design Flow Calculations	PAGE	1	of	1

For non-residential occupancies, the total daily design sanitary sewage flow shall also be in accordance with OBC Table 8.2.1.3.B.

Sewage flow allocations according to OBC Table 8.2.1.3.B.

Occupancy	Flow/Unit	Occupant Load		Sewage Flow Allo	cation
22. Stores (Note 3)					
a) Per 1.0 m2 of floor area, or	5 L	276	of 1.0 m2 floor space	1,380	L/d
26. Warehouse					
a) Per water closet, and	950 L	3	Water Closets	2,850	L/d
b) Per loading bay	150 L	5	Loading Bays	750	L/d
Total Industrial, Commercial and Institutional Occupancy Sewage	4,980	L/d			

PROJECT	16728 Highway 12	FILE	324816		
	Building 'B'	DATE	Septemb	ber 16	, 2024
SUBJECT	Non-Residential Occupancies	NAME	JN		
	Design Flow Calculations	PAGE	1	of	1

For non-residential occupancies, the total daily design sanitary sewage flow shall also be in accordance with OBC Table 8.2.1.3.B.

Sewage flow allocations according to OBC Table 8.2.1.3.B.

Occupancy	Flow/Unit	Occupant Load	Sewage Flow Allocation
26. Warehouse a) Per water closet, and b) Per loading bay	950 L 150 L	 Water Closets Loading Bays 	950 L/d 300 L/d
Total Industrial, Commercial and Institutional Occupance	cy Sewage Design Flow		1,250 L/d

	Project: 16728	HWY 12, Midland		Date:	September 19, 2024						
TATHAM	File No.: 32481	.6		Designed:	MF/JH						
ENGINEERING	Subject: Fire F Fire R	low Demand - Building resistive Construction	Ά'	Checked							
	Revisions:										
Fire Underwriters Survey Fire Flow Calculations											
Calculation Based on 2020 Publication "Water Supply for Public Fire Protection" by Fire Underwriters Survey (FUS).											
		Multiplier Associated	6 1		Total Fire Flow						

Step	Description	Term	Options	with Option	Choose	Value used	Unit	L/n	re ⊢low nin)
				Framing Material	1				
			Type V - Wood Frame Construction	1.5					
			Type IVA - Mass Timber Construction	0.8					
		n Term Options Multiplier Associated with Options Choose Value used Unit Formality Material Type V-Wood Frame Construction 0.8 Type V-Wood Frame Construction 0.8 Type V-Wood Frame Construction 0.9 Type V-Wood Frame Construction 0.9 Type V-Wood Frame Construction 0.0 0.6 % 0.6 % % Coefficient related to type V-Wood Frame Construction 1.0 0.6 % 0.6 % % Coefficient related to type V-Wood Frame Construction 0.8 0.6 % % % % Coefficient related to type V-Wood Frame Construction 0.8 0.6 % % % % Augest Floor Area percentage of the Total Area of the Other Floors for Coefficient 10 to 1.5 100% % % % Area adjoining floor areas plus 50% of all floors immediately above them up to a maximum of eight. or 50% 1674 % % W With options and exterior vertical communications are properly protected in accordance with the National Building Code, consider to two largests 1674 % % M Immed Combustible -0.15 Combustible -0.15 % % Coccuparcy content hazord frage during to provide system the conditions a), b) and c) below must be met. system and the							
1	b Description Term Options Multipler Associated with option Choose V Frame Use for Construction of Unit Type V - Wood Frame Construction 0.8 Frame Use for Construction of Unit Type V - Wood Frame Construction 0.8 Frame Use for Construction of Unit Free Resistive of construction Type V - Wood Frame Construction 0.8 Free Resistive Construction Free Resistive Construction Free Resistive Construction Free Resistive Construction 0.8 Free Resistive Construction Free Resistive Construction Free Resistive Construction 0.8 Free Resistive Construction Free Re								
		of construction	Type IVD - Mass Timber Construction	1.5	Construction	0.6	%	N/A	
		(C)	Ordinary Construction	1.0					
			Non-combustible Construction	0.8				Iotal Fire F (L/min) N/A N/A (1,350) (3,060) 612	
			Fire Resistive Construction	0.6				Total Fire (L/mir N/A N/A (1,350) (1,350) 612 0 83	
		Largest Floor Ar	ea			3348			
		Percentage of th	e Total Area of the Other Floors for Coeffic	ient 1.0 to 1.5	100%				
		Percentage of th	e Total Area of the Other Floors for Coeffic	ient below 1.0:					
2	Total Effective Area	a) If any vertical adjoining floor an of eight, or	opening in the building are unprotected, co reas plus 50% of all floors immediately above	nsider the two largest them up to a maximum	50%		m²	N/	Ά
	b) If all vertical openings and exterior vertical communications are properly protected in accordance with the National Building Code, consider only the single largest Floor Area plus 25% of each of the two immediately adjoining floors. Total Effective Area 5022								
				Tota	al Effective Area	5022			
3	Required Fire Flow without Reductions or Increases		Required Fire Flows	without Reductions or In	creases per FUS	5): (RFF= 220 x	C x A ^{0.5})		9,000
4	Factors Affecting Burning	-	Reductions / Ir	ncreases Due to Factors A	Affecting Burnin	g	•		
			Non-combustible	-0.25					
	Combustibility of	Occupancy	Limited combustible	-0.15	Limitod				
4.1	Building Contents	reduction or	Combustible	0.00	combustible	-0.15	%	(1,350)	7,65
		surcharge	Free burning	0.15					
			Rapid burning	0.25					
			For a fully supervised system the condition	ns a), b) and c) below mu	ist be met.				
4.2	Reduction Due to	Sprinkler	designed and installed in accordance with NEPA 13	-0.3	Yes	0.4		(7.000)	4.50
4.2	Presence of Sprinklers	reduction	system and the Fire Department hose	-0.1	Yes	-0.4	76	(3,060)	4,59
			c) Fully supervised system	-0.1	No				
			None	0.0	No	1	F= 220 x C x A ^{0.5})		
	Concention Distance		North Side	Greater than 30.0 m	0.00				
	Between Units (Use 10%	Exposure	East Side	Greater than 30.0 m	0.00				=
4.3	for 2 hour Fire Separation between	distance between units	South Side	10.1 to 20.0 m	0.08	0.08	%	612	5,20
	adjacent units)		West Side	Greater than 30.0 m	0.00				
			Non-combustible roofing material	0	Ner				
	Combustibility of Wood	Surcharge for	Low risk of fire spread	2000	combustible	0	1. 1	0	5 00
4.4	Sningle or Shake Roof Material	potential to spread fire	Moderate risk of fire spread	3000	roofing	U	L/ min	U	5,20
			High risk of fire spread	4000	material				
					0001 /min	may/min limit	s applied:		5.00
			Total Required Fire Fl	ow, rounded to nearest 1	000 L/min, with	max/min innit	s applieu.		0,00
			Total Required Fire FI	ow, rounded to nearest 1	Total Required F	Fire Flow (abov	re) in L/s:	8	3
5	Required Fire Flow,		Total Required Fire Fl	ow, rounded to nearest 1 Required Duration of Fi	Total Required F ire Flow of 5	Fire Flow (abov 6,000 L/min (I	re) in L/s: nrs):	8	3

				Project:	16728 HWY 12, Midland	1	D	ate:	September 19, 2024	
	TAT	ΤΗΑ	File No.: 324816					igned:	JH	
	ENGI	NEER	RING	Subject:	Fire Flow Demand - Bu Fire Resistive Construc	ilding 'B' tion	Che	ecked		
				Revisions:						
Fire Ur	derwriters Survey Fire F	low Calculation	s							
Calculation Based on 2020 Publication "Water Supply for Public Fire Protection" by Fire Underwriters Survey (FUS).										
Step	Description	Term	Ор	otions	Multiplier Associ with Option	ated Choose	Value used	Unit	Total Fire Flow (L/min)	

Step	Description	Term	Options	with Option	Choose	Value used	Unit	(L/n	nin)
				Framing Material					
			Type V - Wood Frame Construction	1.5					
			Type IVA - Mass Timber Construction	0.8					
		0	erm Options mwith Option Choose Value used Unit Cross Framing Material Type IV- Wood Frame Construction 1.5 Type IVA - Mass Timber Construction 0.9 Framing Material 0.6 \$ Type IVA - Mass Timber Construction 1.0 0.8 Fire Resistive 0.6 \$ CO Type IVD - Mass Timber Construction 1.0 0.6 \$ \$ Non-combustible Construction 0.8 Fire Resistive 0.6 \$ \$ tage of the Total Area of the Other Floors for Coefficient 1.0 to 1.5 100% 1386 \$ \$ tage of the Total Area of the Other Floors for Coefficient below 1.0: * * \$ \$ y vertical opening in the building are unprotected, consider the two largest maximum 50% 1779 * vertical openings and exterior vertical communications are properly ted in accordance with the National Building Code, consider only the single Floor Area plus 25% of each of the two immediately adjoining floors. 1779 * * Required Fire Flows without Reductions or Increases per FUS): (RFF= 220 x C x A ^{0.3}) . <						
1	Description Frame Use for Construction of Unit Total Effective Area Total Effective Area Required Fire Flow without Reductions or Increases Factors Affecting Burning Combustibility of Building Contents Reduction Due to Presence of Sprinklers Separation Distance Between Units (Use 10% for 2 hour Fire Separation between adjacent units) Combustibility of Wood Shingle or Shake Roof Material	related to type	Type IVC - Mass Timber Construction 1.0		Fire Resistive				
		of construction	Type IVD - Mass Timber Construction	1.5	Construction	0.6	76	N/	A
		(C)	Ordinary Construction	1.0					
			Non-combustible Construction	0.8				N/A N/A N/A (2,800)	
			Fire Resistive Construction	0.6					
		Largest Floor Ar	ea			1186			
		Percentage of th	e Total Area of the Other Floors for Coeffici	ient 1.0 to 1.5	100%				
		Percentage of th	e Total Area of the Other Floors for Coeffici	ent below 1.0:					
2	Total Effective Area	a) If any vertical adjoining floor ar of eight, or	opening in the building are unprotected, co reas plus 50% of all floors immediately above	nsider the two largest them up to a maximum	50%	1779	m²	N/	A
		b) If all vertical o protected in acco largest Floor Are	penings and exterior vertical communication ordance with the National Building Code, co a plus 25% of each of the two immediately a	ns are properly onsider only the single djoining floors.	25%				
				Tota	al Effective Area	2965			
3	Required Fire Flow without Reductions or Increases		Required Fire Flows	without Reductions or In	icreases per FUS): (RFF= 220 x	C x A ^{0.5})		7,000
4	Factors Affecting Burning		Reductions / In	creases Due to Factors	Affecting Burnin	g	•		
			Non-combustible	-0.25					
	Combustibility of	Occupancy	Limited combustible	-0.15					
4.1	Building Contents	reduction or	Combustible	0.00	Combustible	0	%	-	7,000
		surcharge	Free burning	0.15	-				
			Rapid burning	0.25					
			For a fully supervised system the condition	is a), b) and c) below mi	ust be met.				
	Reduction Due to	Sprinkler	a) Automatic sprinkler protection designed and installed in accordance with NEPA 13	-0.3	Yes				
4.2	Presence of Sprinklers	reduction	system and the Fire Department hose lines	-0.1	Yes	-0.4	%	(2,800)	4,200
			c) Fully supervised system	-0.1	No				
			None	0.0	No				
	Separation Distance		North Side	10.1 to 20.0 m	0.08				
4.3	Between Units (Use 10%	Exposure	East Side	Greater than 30.0 m	0.00	0.08	%	560	4.76
	Separation between	between units	South Side	Greater than 30.0 m	0.00				, .
	adjacent units)		West Side	Greater than 30.0 m	0.00				
			Non-combustible roofing material	0	Non-				
4.4	Combustibility of Wood Shingle or Shake Roof	Surcharge for	Low risk of fire spread	2000	combustible	0	L/min	0	4.76
	Material	spread fire	Moderate risk of fire spread	3000	roofing material		,		
			High risk of fire spread	4000	inaconal				
	1	I	Total Required Fire Flo	ow, rounded to nearest 1	000 L/min, with	max/min limit	s applied:		5,00
	Required Fire Flow				Total Required F	ire Flow (abov	ve) in L/s:	83	3
-					ine Elevis of	I (main (h	arc):	1.7	75
5	Duration and Volume			Required Duration of F	Ire Flow of 5	,000 L/min (r	irs).	1.7	0

PROJECT	16729 HWV 12 Midland	FILE	3248	16	
		DATE	19-Se	ep-202	24
SUBJECT	Water Supply Calculations	NAME	JH	CHECK	JN
	Commercial Development	PAGE	1	OF	2

SITE DESCRIPTION

Proposed 3-storey retail/ self-storage building (Building 'A') and 1-storey logistics building with 3-storey high interior (Building 'B').

2

DAILY DEMAND DESIGN PARAMATERS - PER OBC Table 8.2.1.3.B

Description	Dome	estic	Fire		Max Day Factor
Building 'A'	4,980	L/d	83	L/s	Peak Hour Factor
Building 'B'	1,250	L/d	83	L/s	
		L/d		L/s	Q = PxDxPF, where:
		L/d		L/s	P = Population

D = Per Capita Demand

PF = Peaking Factor

Total	6,230	0.07	0.14	0.29
	0	0.00	0.00	0.00
	0	0.00	0.00	0.00
Building 'B'	1,250	0.01	0.03	0.06
Building 'A'	4,980	0.06	0.12	0.23
Design Demand	L/day	L/s	L/s	L/s
Design Demand	A	DD	MDD	PHF

WATERMAIN SERVICE SIZING AND FRICTION LOSS

Domestic Peak	D	Q	А	V	С	L	F	riction Loss	5	
Demand	(mm)	(L/s)	(m ²)	(m/s)		(m)	(m)	psi	kPa	D - Pipe Diameter
Building 'A'	25	0.23	0.0005	0.47	100	7.4	0.183	0.261	1.80	Q - Demand Flow
Building 'B'	25	0.06	0.0005	0.12	100	0.0	0.000	0.000	0.00	A - Pipe Flow Area
										V - Flow Velocity
										C - Pipe Coefficient
Pvt. Watermain	200	0.29	0.0315	0.01	110	145.9	0.000	0.001	0.01	L - Pipe Length
Fire Fighting							-			1
Building 'A'	150	83.00	0.0177	4.69	100	7.4	1.607	2.286	15.77	A = (πD2)/4
Building 'B'	200	83.00	0.0315	2.64	110	0.0	0.000	0.000	0.00	V = Q/A
										$h_f = L \left(\frac{Q}{0.370 G R^2 6^2} \right)^{70.34}$
Pvt. Watermain	200	83.14	0.0315	2.64	110	145.9	6.564	9.334	64.36	$(0.278CD^{2.63})$

PROJECT	16728 HW/V 12 Midland	FILE	3248	16	
		DATE	19-Se	ep-202	24
SUBJECT	Water Supply Calculations	NAME	JH	CHECK	JN
	Commercial Development	PAGE	2	OF	2

STATIC HEAD LOSS - Presuming 43 psi Static Pressure at Property Frontage

Static Head Loss	Road C/L Elev	Depth to W/M	Finished Floor	Building Height	Total Head Loss			
	(m)	(m)	(m)	(m)	(m)	(psi)	(kPa)	
Building 'A'	221.27	1.70	219.14		-0.43	-0.612	-4.22	
Building 'B'	221.27	1.70	220.18		0.61	0.868	5.99	

TOTAL LOSSES - To Building Finished Floor

Domostic Sorvico	Static P	ressure	Static Loss	W/M Loss	Service Loss	Total Loss	Service	Pressure
Domestic Service	(psi)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(psi)
Building 'A'	43	296.48	-4.22	0.01	1.80	-2.41	298.89	43.36
Building 'B'	43	296.48	5.99	0.01	0.00	6.00	290.48	42.14
Fire Fighting								
Sorvico Typo	Static Pressure		Static Loss	W/M Loss	Service Loss	Total Loss	Service	Pressure
Service Type	(psi)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(psi)
Building 'A'	43	296.48	-4.22	64.36	15.77	75.91	220.57	32
Building 'B'	43	296.48	5.99	64.36	0.00	70.35	226.13	32.8

Appendix B: Sanitary Flow Calculations

PROJECT	16728 HWY 12, Midland	FILE	324816
		DATE	3/5/2024
SUBJECT	Sanitary Servicing	NAME	MF
		PAGE	1 or 1

Appendix C: Design Drawing

ENGINEER WITHOUT THE EXPRESS CONSENT OF

Drawing Name: 324816-DET-1.dwg, Plotted: Sep 25, 2024

TATHAM ENGINEERING LIMITED.

REVISION DESCRIPTION	DATE	ENGINEER STAMP	OFESSION	16728 HIGHW
1ST SUBMISSION	AUG. 2024	(a)	A CHARTER	
			La NEMISZ	TOWN OF MI
		۲.	100181826	
		138	324816 810	NOTES AND [
			NCE OF ON	

DETAILS DRAWN: JH DATE: AUG. 2024 CHECK: JN SCALE: 1:500

Drawing Name: 324816—LG01.dwg, Plotted: Sep 25, 2024

KEY PLAN

LEGEND

PROPOSED GROUND ELEVATION EXISTING GROUND ELEVATION *○ STM MH* FUTURE STORM MH FUTURE STORM CB PROPOSED OVERLAND FLOW DIRECTION PROPOSED MH C/W OGS UNIT PROPOSED WATER VALVE PROPOSED HYDRANT & VALVE EXISTING HYDRANT PROPOSED CULVERT POTENTIAL ROOF DRAIN FIRE DEPARTMENT CONNECTION

6 H S 6 **NIX**

IAY 12 100 concession 1) IDLAND			A M R I N G
	DESIGN: JH	FILE: 324816	DWG:
IG PLAN	DRAWN: JH	DATE: AUG. 2024	LG.1
	CHECK: JN	SCALE: 1:500	

<u>LEGEND</u>

SILT/TREE PROTECTION FENCE OPSD 219.131 STRAW BALE FLOW CHECK DAM OPSD 219.180 PERMANENT ROCK CHECK DAM OPSD 219.211 STONE MUD MAT

CATCH BASIN FILTER

CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF

TATHAM ENGINEERING LIMITED.

Drawing Name: 324816-SC-1.dwg, Plotted: Sep 25, 2024

SILTATION AND EROSION CONTROL NOTES

- 1. ALL SILTATION AND EROSION CONTROL MEASURES TO BE IN PLACE PRIOR TO CONSTRUCTION.
- 2. CONTRACTOR TO INSTALL AND MAINTAIN SILTATION CONTROL DEVICES AT LOCATIONS SHOWN, OR AS DIRECTED BY THE CONTRACT ADMINISTRATOR IF ADDITIONAL CONTROLS ARE DEEMED NECESSARY.
- 3. CONTRACTOR TO ARRANGE PRE-CONSTRUCTION MEETING WITH CONTRACT ADMINISTRATOR IMMEDIATELY AFTER PLACING ALL SILTATION CONTROL DEVICES.
- 4. SILTATION CONTROL DEVICES TO BE INSPECTED BY CONTRACTOR WEEKLY AND AFTER EACH RAINFALL. REPAIRS TO SILTATION CONTROL DEVICES TO BE COMPLETED PROMPTLY WHEN REQUIRED.
- 5. THE CONTRACT ADMINISTRATOR WILL INSPECT THE SEDIMENT AND EROSION CONTROL MEASURES PERIODICALLY, AND AFTER EACH MAJOR STORM EVENT. THE CONTRACT ADMINISTRATOR WILL NOTIFY THE CONTRACTOR OF CORRECTIVE ACTIONS REQUIRED AS SOON AS DEFICIENCIES ARE NOTED. THE CONTRACTOR MAINTAINS ULTIMATE RESPONSIBILITY TO ENSURE PROPER SEDIMENT AND EROSION CONTROL MEASURES ARE IMPLEMENTED AND MAINTAINED. ALL DEFICIENCIES AND CORRECTIVE MEASURES WILL BE DOCUMENTED BY THE CONTRACTOR IN A WEEKLY INSPECTION REPORT. A COPY OF THE WEEKLY INSPECTION REPORT WILL BE PROVIDED TO THE CONTRACT ADMINISTRATOR.
- 6. CONTRACTOR TO REMOVE SILTATION CONTROL DEVICES ONLY AFTER ALL PAVING IS COMPLETED AND VEGETATION HAS STABILIZED.
- 7. ALL SILT FENCE PER OPSD 219.131 (SEE DETAIL ON THIS DRAWING) .

CONSTRUCTION ENTRANCE NOTES

- 1. CONSTRUCT AND MAINTAIN CONSTRUCTION ENTRANCE AS SHOWN AND IN ACCORDANCE WITH O.P.S.D. 301.020.
- 2. ALL CONSTRUCTION VEHICLES TO ACCESS THE SITE USING THE DESIGNATED CONSTRUCTION ENTRANCE.
- 3. CONTRACTOR TO INSTALL AND MAINTAIN STONE MUD MAT AS DETAILED.
- 4. REMOVE TOPSOIL (WHERE APPLICABLE) BEFORE INSTALLING CONSTRUCTION ENTRANCE.
- 5. PROMPTLY REMOVE ANY MUD OR DUST WHICH IS TRANSPORTED BEYOND THE STONE MUD MAT TO MAINTAIN EXISTING ROAD DRIVING CONDITION.
- 6. ENTRANCE RADII TO BE MINIMUM 8.0m.

AY 12 100 CONCESSION 1) DLAND			
	DESIGN: JH/MPO	FILE: 324816	DWG:
	DRAWN: JH/MPO	DATE: AUG. 2024	ESC-1
	CHECK: JN	SCALE: 1:750	

CONTROL

KEY PLAN

LEGEND

→ STM MH CB	PROPERTY LINE EXISTING DITCH EXISTING STORM SEWER EXISTING STORM MH EXISTING STORM CB
200ø SAN	PROPOSED SANITARY SEWER/ SIZE/ DIRECTION OF FLOW
4500 STM	PROPOSED STORM SEWER/ SIZE/ DIRECTION OF FLOW
50¢ WATERMAIN	WATERMAIN/SIZE
	PROPOSED SANITARY SERVICE
<u> </u>	PROPOSED WATER SERVICE
⊳ ·	PROPOSED DITCH
●SAN MH2	PROPOSED SANITARY MANHOLE/ NUMBER
● STM MH2	PROPOSED STORM MANHOLE/ NUMBER
✦HYD & wv	PROPOSED HYDRANT & WATER VALVE
► WV	PROPOSED WATER VALVE
►CSV	PROPOSED WATER CURB STOP
\$	POTENTIAL ROOF DRAIN
	ENTRANCE/EXIT – VEHICULAR
\triangleright	ENTRANCE/EXIT – PEDESTRIAN
+ HYD	EXISTING HYDRANT
	PROPOSED CULVERT
Ŷ	FIRE DEPARTMENT CONNECTION

VAY 12 F 100 CONCESSION 1) IDLAND	TATHAM		
	DESIGN: JH/WL	FILE: 324816	DWG:
ICING PLAN	DRAWN: JH/WL	DATE: AUG. 2024	GS.1
	CHECK: JN	SCALE: 1:500	